(3.238.250.105) 您好!臺灣時間:2021/04/20 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹偉臣
研究生(外文):Wei-Chen Zhan
論文名稱:具微共振腔結構型有機電激發光元件之研究
論文名稱(外文):A Study of Organic Light-Emitting Diodes with Micro-Cavity Structure Type
指導教授:黃國勝黃國勝引用關係
指導教授(外文):Kao-Shing Hwang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:82
中文關鍵詞:全彩微共振腔有機電激發光元件
外文關鍵詞:OLEDMicrocavityfull color
相關次數:
  • 被引用被引用:1
  • 點閱點閱:584
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
由於OLED優越的發光性質、簡單的製程技術、低重量、低成本的特性, OLED是非常適合應用在顯示器面板。而以目前製作全彩OLED的製程技術而言,不外乎以下列三種製程方式(a)RGB畫素並置法、(b)色轉換法以及(c)彩色濾光片法。然而,當在設計全彩的成像時,仍然有釵h問題必須克服。有鑑於此,本論文提出以具微共振腔型有機電激發光元件調製作出具高色純度且較簡易製程之全彩OLED元件,本論文即是針對此一課題做深入之研究及開發。
在具微共振腔型有機電激發光元件的研究中,微共振腔OLED元件須具備三個主要元素:第一個為兩平行且具反射性的陰極與陽極;第二個為兩電極間的共振腔,即堆疊的有機層;第三個為微共振腔OLED元件內部的光源。此論文中,我們採取下發光的微共振腔OLED元件,並搭配光學模型模擬來做電洞注入層膜厚的調變。此微共振腔OLED元件結構為:
ITO /Ag (600 Å)+O2 plasma /m-MTDATA: 3% F4-TCNQ (X Å ) /NPB (200Å) /Alq3 (400 Å) /LiF (7 Å) /Al (1800 Å)。
經由改變X厚度,可使微共振腔OLED元件分別達到藍、綠與紅色的全彩效果。在50 mA/cm2操作下,X =350 Å、500 Å與800 Å,分別可得到色座標CIE為(0.175, 0.527)的藍綠光、(0.237, 0.699)的綠光與(0.519, 0.451)的紅光,其中,X = 500 Å的OLED元件色座標已非常接近NTSC規範的綠色CIE(0.22, 0.71)。
OLED is known for its superior luminance characteristic, the ease of its process technology, the characteristic of low weight and low cost applications, so that OLEDs are well suited for application for displays.
So for when it comes to process techniques for fabricating full color OLED, there are mainly the following three processes: (a)RGB side by side Method (b) CCM Method (c) Color Filter Method. However, there are still obstacles to overcome when full color imaging becomes an issue in the design applications parameters, such as the impurity of the primary color. From the view of point, we report OLED with micro-cavity structure type that can design and fabricate full color OLED with high color saturation and high reliability. Hence, this paper will provide a deeply study for research and development in accordance with this topics.
In this study of OLED with micro-cavity structure type, there are three main elements to constitute microcavity OLED: first, two parallel cathode and anode with reflectivity. Second, a microcavity resonator between two electrodes,that is stack organic layers. Third, light source within microcavity OLED. In this thesis, we adopt bottom emitting OLED with micro-cavity structure type, and modify the thickness of HIL according to the results of simulation based on Fabry-Perot optical model. This micro-cavity OLED structure: ITO /Ag (600 Å)+O2 plasma /m-MTDATA:3% F4-TCNQ (X Å ) /NPB (200 Å) /Alq3 (400 Å) /LiF (7 Å) /Al (1800 Å). After micro-cavity modulation, we carry out full colors including blue, green and red by utilizing micro-cavity technique: when operating devices at 50 mA/cm2 with X = 350 Å, 500 Å and 800 Å, respectively, blue light of CIE (0.175, 0.527), green light of CIE (0.237, 0.699), red light of CIE (0.519,0.451) were obtained. Among them, the color of micro-cavity OLED with HIL of 500 Å is close to green standard of NTSC of CIE (0.22, 0.71).
VII
目錄
中文摘要………………………………………………………………..III
英文摘要………………………………………………………………..IV
感謝……………………………………………………………………..VI
目錄…………………………………………………………………….VII
圖目錄…………………………………………………………………..IX
表目錄………………………………………………………………...XIII
Chapter 1 緒論………………………………………………..1
1.1 研究背景…………………………………………………………….1
1.2 研究動機與目的…………………………………………………….3
1.3 論文之章節架構…………………………………………………….4
Chapter 2 基本理論…………………………………………..5
2.1 有機電激發光元件之介紹…………………………………………5
2.2 具微共振腔有機電激發光元件之介紹……………………………5
2.2.1 微共振腔有機電激發光元件的基本原理……………………5
2.2.2 微共激振腔光學模型…………………………………………6
2.2.3 輸入與輸出……………………………………………………7
2.2.4 微共振腔有機電激發光元件的特性…………………………9
2.2.5 微共振腔有機電發光元件發展之文獻回顧………………...9
2.3 有機電激發光元件全彩化的發展………………………………..10
2.3.1 全彩化製程之介紹與比較…………………………………10
VIII
2.3.2 新型之微共振腔有機電激發光元件…………………….…13
Chapter 3 微共振腔有機電激發光元件之製作與設計……15
3.1 系統、製程與元件量測……………………………………………15
3.1.1 系統…………………………………………………………..15
3.1.2 實驗製程……………………………………………………..15
3.1.3 元件量測……………………………………………………..17
3.2 微共振腔OLED 元件之模擬……………………………………..18
3.2.1 事前準備…………………………………………………….18
3.2.2 模擬:設計電洞注入層的厚度………………………………19
Chapter 4 微共振腔OLED元件之研究方法………………21
4.1 陽極的表面處理與反射率…………………………………….21
4.1.1 銀的反射率……………………………………………..21
4.1.2 銀的表面處理…………………………………………..22
4.2 綠光OLED 結構……………………………………………...23
4.2.1 電洞注入層……………………………………………..23
4.2.2 穩定的發光頻譜………………………………………..24
4.3 微共振腔OLED 元件的製作與驗證…………………………27
Chapter 5 結論與未來展望…………………………………..29
參考文獻……………………………………………………...30
附圖…………………………………………………………...33
附表…………………………………………………………...65
[1]. Q. Pope, M., Kallmann, H. P. and Magnante, P. J. Chem. Phys. 38,2042,(1963).
[2]. C. W. Tang and S. A. VanSlyke. Appl. Phsy. Lette. 51, 913 (1987).
[3]. Burroughs, J. H., Bradley, D. D. C, Brown, A. R., Marks, R. N.,
Mackay, K., Friend, R. H., Burn, P. L. and Holmes, A. B. Nature.
347, 539 (1990)
[4]. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E.
Slusher, and J. M. Phillips, J. Appl. Phys. 80, 12 (1996).
[5]. S. Han, D. Grozea, C. Huang, Z. H. Lu, R. Wood, and W. Y. Kim, J.
Appl. Phys. 96, 709 (2004).
[6]. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, J. Mod. Opt. 41,
325 (1994).
[7]. S. Dirr, A. Bohler, S. Wiese, H. H. Johannes, W. Kowalsky. “Organic
light emitting diodes with reduced spectral and spacial halfwidths,”
Japanese-Journalof-Applied-Physics. 37, no.3B; March 1998;
p.1457-61.
[8]. A. Dodabalapur, L.J. Rothberg, R.H. Jordan, T.M. Miller, R.E.
Slusher, and Julia M. Phillips, J. Appl. Phys., 80, 6954 (1996). (b)E.
F. Schubert, N.E.J.Hunt, M.Micovic, R.J.Malik, D.L.Sivco, A.Y.
Cho, G.J.Zydzik, Science, 265, 943 (1994).
[9]. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S.
R.Forrest. Weak microvavity effects in organic light-emitting
devices. Physical Review B. 58, no 7; 15 Aug 1998; p 3730-40.
[10]. E. F. Schubert. N. E. J. Hunt, R. J. Malik, M. Micovic, D. L. Miller.
Temperature and Modulation Characteristics of Resonant-Cavity
Light-Emitting Diodes. Journal of Lightwave Technology. 14, No.7;
July 1996.
[11]. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, R. E. Slusher.
“Efficiency enhancement of microcavity organic light emitting
diodes,” Applied-Physics-Letters. 69, no.14; 30 Sept. 1996;
p.1997-9.
[12]. S. Tokito, T. Tsutsui, Y. Taga. “Microcavity organic light-emitting
diodes for strongly directed pure red, green, and blue emissions,”
Journal-of-Applied-Physics. 86, no.5; 1 Sept. 1999; p.2407-11.
[13]. K. Neyts, P. De-Visschere, D. K Fork, G. B Anderson.
“Semitransparent metal or distributed Bragg reflector for
wide-viewing-angle,”
Journal-of-the-Optical-Society-of-America-B-(Optical-Physics). 17,
no.1; Jan. 2000; p.114-19.
[14]. P. K. Raychaudhuri, J. K. Madathil, J. D. Shore and S.A. VanSlyke,
Jounal of SID, 12/3, 315 (2004).
[15]. A. Dodabalapur, L.J. Rothberg, and T.M. Miller, Appl. Phys. Lett.,
65, 2308 (1994).
[16]. T.Shiga, H. Fujikawa, Y. Taga, J.Appl. Phys., 93, 19 (2003).
[17]. Z. Xie, L. S. Hung, F. Zhu, Chem.Phys.Lett., 381, 691, (2003).
[18]. P.K. Raychaydhuri, J,K, Madathil, J,D, Shore and S.A. VanSlyke,
Jounal of the SID, 12/3, 315 (2004).
[19]. C.-W. Chen, P.-Y. Kim K.-B Kim, Y.-H Tak and J.-L. Lin, H.-M
Wu, and C.-C Wu, Appl. Phys. Lett., 83, 5127 (2003).
[20]. H. W. Choi, S.Y. Kim, K.-B. Kim, Y.-H. Tak and J.-L. Lee, Appl.Phys. Lett., 86, 012104 (2005).
[21]. G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, Appl. Surf.
Sci. 183, 191 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔