跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 04:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳偉彥
研究生(外文):Wei-Yan Chen
論文名稱:直接調變式半導體雷射遭外部光注入之頻率響應特性
論文名稱(外文):Frequency Response Characteristics in Directly Modulated Semiconductor Lasers Subject to External Optical Injection
指導教授:黃勝廣
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:94
中文關鍵詞:光纖通訊半導體雷射
外文關鍵詞:Semiconductor Lasers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此論文中是利用數值模擬分析的方式來研究直接調變式半導體雷射遭外部光注入之頻率響應特性,內容主要是探討此雷射系統在不同的外部操作和內部本質參數下,對於頻寬、共振頻率和頻率響應曲線平坦度的影響,以探討實際可適用於光纖通訊系統的操作條件。經由光鎖定注入的方式,操作在穩定區的注入範圍條件下,較大的注入強度 和較正的頻率差值 ,最大可以觀察到40GHz以上的頻寬,比未注入的雷射系統增加了約3倍,若是同時增加正規偏壓電流值的大小,頻寬最高可以達到60GHz以上,而改變不同的內部本質參數值,頻寬也會有不同程度的增加,因此可以證明光鎖定注入方式是增加頻寬非常有效的方法。半導體雷射拿來做發射端,其輸出的頻率響應曲線越平坦,對於光纖通訊而言是越好的,在此我們探討在穩定區的注入範圍條件下,改變不同的外部操作和內部本質參數,對於曲線平坦度的影響,以利於往後實驗能掌握到最好的參數。
A numerical simulation analyses on frequency response characteristics in directly modulated semiconductor lasers subject to external optical injection is presented in this thesis. The content is bandwidth、resonance frequency and flatness of the laser system as a function of operational parameters and intrinsic parameters are investigated and discussed to explore the appropriate operating conditions for practical applications in optical fiber communications. Through the injection-locking method under stable locking area, more larger injection parameter and more positive detuning frequency difference can observe above 40GHz bandwidth, have increased about 3 times than the laser system that is not injected. If increase the bias current at the same time, bandwidth can reach above 60GHz at most. Change different intrinsic parameters, then bandwidth increase in various degrees too. So the injection-locking technique is a very effective method for bandwidth enhancement. When semiconductor laser used an emitter, frequency response curve more flatter is more fine to optical fiber communications. We change different operational and intrinsic parameters for the flatness influence of the curve, in order to get the best parameters afterwards.
中文、英文摘要...................................................................................... ii
致謝.......................................................................................................... iv
內容目錄................................................................................................... v
圖目錄......................................................................................................vii

第一章. 前言.............................................................................................1
1.1 簡介...........................................................................................1
1.2 研究動機...................................................................................5
1.3 論文架構...................................................................................6

第二章. 光鎖定注入雷射系統.................................................................7
2.1 理論模型...................................................... ............................7
2.2 模擬模型...................................................................................8

第三章. 頻寬、共振頻率和頻率響應曲線平坦度的討論...................10
3.1 頻寬、共振頻率和頻率響應曲線平坦度的簡介.................10
3.2 外部操作參數對於頻率響應特性的影響.............................12
3.2.1 注入強度和頻率差值..................................................12

3.2.2 正規偏壓電流值..........................................................20

3.3 內部本質參數對於頻率響應特性的影響…………….........30
3.3.1 線寬增強因子..............................................................30
3.3.2 差動載子衰減率..........................................................41
3.3.3 非線性載子衰減率......................................................49
3.3.4 自發性載子衰減率......................................................58

第四章. 總結...........................................................................................65
參考文獻..................................................................................................67
附錄ㄧ......................................................................................................74
附錄二......................................................................................................79
[1]. R. Lang, “Injection locking properties of a semiconductor laser,” J. Quantum Electron IEEE, vol. 18, no. 6, 1982, pp. 976-983.
[2]. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability
properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron, vol. 21, no. 7, 1985, pp. 784-793.
[3]. C.H. Henry, N.A. Olsson, and N.K. Dutta, “Locking range and stability of
injection locked 1.54 µm InGaAsp semiconductor lasers,” IEEE J. Quantum Electron, vol. 21, no. 8, 1985, pp. 1152-1156.
[4]. K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz Ti : LinNb optical modulator,” presented at Optical Fiber Communications Conference, 1994.
[5]. L. Xun, and H. Wei-Ping, “Analysis of frequency chirp in DFB lasers integrated with external modulators,” IEEE J. Quantum Electron, vol. 30, no. 12, pp. 2756-2766, 1994.
[6]. Geert Morthier, Richard Schatz, and Olle Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron, vol. 36, no. 12, December 2000, pp.1468-1475.
[7]. G. Sun, J.B. Khurgin, and R.A. Soref, “Design of quantum-dot lasers with an
indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon Technol. Letters, vol. 16, no. 10, pp. 2203-2205, 2004.
[8]. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke and L.backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55µm wavelength,” Electronics Letters, March, 1997 vol. 33 no.6.
[9]. Yasuhiro Matsui, Hitoshi Murai, Shin Arahira, Satoko Kutsuzawa, and Yoh
Ogawa, “30 GHz bandwidth 1.55 µm strain compensated InGaAlAs-InGaAsP

MQW laser,” IEEE Photonics Technol. Letters, vol. 9, no. 1, January 1997, pp.25-27.
[10]. P. Gallion, H. Nakajima, G. Debarge, C. Chabran, “Contribution of spontaneous
emission to the linewidth of an injection locked semiconductor,” Electron. Lett,
vol. 21, no. 14 pp. 626-628 1985.
[11]. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement
factor of semiconductor lasers using an injection-locking technique,” IEEE Photonics Technology Letters, vol. 13, no. 5, May 2001, pp. 430-432.
[12]. J. M. Liu, H. F. Chen, X. J. Meng, and T. B, Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photonics Technology Letters, vol. 9, no. 10, October 1997, pp. 1325-1327.
[13]. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technology Letters, vol. 7, no. 7, July 1995, pp. 709-711.
[14]. K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser
diode light injection,” IEEE Transactions on Microwave Theory & Techniques,
vol. MTT-30, pp. 1657-62, 1982.
[15]. S. Piazzolla, P. Spano, and M. Tamburrini, “Small signal analysis of frequency
chirping in injection- locked semiconductor lasers,” IEEE Journal of Quantum
Electronics, vol. QE-22, pp. 2219-23, 1986.
[16]. S. Mohdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” Journal of Lightwave Technology, vol. 12, pp. 418-24, 1994.
[17]. X. J. Meng, C. Tai, and M. C. Wu, “Improved intrinsic dynamic distortions in
directly modulated semiconductor lasers by optical injection locking,” IEEE
Transactions on Microwave Theory & Techniques, vol. 47, pp. 1172-6, 1999.
[18]. H.-K Sung, Y.-K Seo, and W.-Y Choi, “Dependence of semiconductor laser

intermodulation distortions on fiber length and its reduction by optical injection locking,” IEEE International Topical Meeting on Microwave Photonics, pp. 186-189, 2000.
[19]. Lukas Chrostowski, Michael Moewe, Wendy Zhao, Chih-Hao Chang and Connie Chang-Hasnain, “39 GHz Intrinsic bandwidth of a 1.55µm injection locked VCSEL” 2004 Optical Society of America.
[20]. L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R.Shan, M. Ortsiefer and M. C. Amann, “Very high resonance frequency (>40GHz) optical injection-locked 1.55µm VCSELs”.
[21]. Lukas Chrostowski, Xiaoxue Zhao, Connie J. Chang-Hasnain, Robert Shan, Markus Ortsiefer and Markus Christian Amann, “50 GHz directly modulated injection-locked 1.55µm VCSELs” 2005 Optical Society of America.
[22]. Xue Jun Meng, Tai Chau and Ming C. Wu, ”Experimental demonstration of
modulation bandwidth enhancement in distributed feedback lasers with external
light injection,” Electronics Letters, 15th October 1998, vol.34, no.21, pp. 2031-2032.
[23]. J. Wang, M. K. Haldar, L. Li and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photonics Technology Letters, vol. 8, no. 1, January 1996, pp. 34-36.
[24]. S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic bandwidth for direct modulation in 1.3-um semiconductor lasers subject to strong injection locking,” IEEE Photonics Technology Letters, vol. 16, no. 4, April 2004, pp. 972-974.
[25]. T. B. Simpson, and J. M. Liu, “Enhanced modulation bandwidth in injection locked semiconductor lases,” IEEE Photonics Technology Letters, vol. 9, no. 10, October 1997, pp. 1322-1324.
[26]. Y. Okajima, S.K. Hwang and J. M, Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical
injection,” Optics Communications 219, 2003, pp. 357-364.

[27]. M. K. Haldar, J. C. Coetze, and K. B. Gan, “Optical frequency modulation and intensity modulation suppression in a master-slave semiconductor laser
system with direct modulation of the master laser,” IEEE Journal of Quantum
Electronics , vol. 41, no. 3, March2005, pp. 280-286.
[28]. Erwin K. Lau, Ming C.Wu, “Amplitude and frequency modulation of the
master laser in injection-locked laser systems,” 2004, pp. 142-145.
[29]. Taraprasad Chattopadhyay, Madhumita Bhattacharya, “FM-AM conversion in
injection-locked semiconductor lasers,” Optics Communications 163, 1999, pp.
193-197.
[30]. A. Bilenca et al., “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550nm,” IEEE Photon. Technol. Lett., vol. 15, no. 4, April 2003
[31]. S.K. Hwang, J.M. Liu, and J.K. White, “Characteristic of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Select. Topics Quantum Electron., vol. 10, no. 5, pp. 974-981, 2004.
[32]. V. Kovanis, A. Gavrielides, T.B. Simpson, and J.M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Letter, vol. 67, no.19, pp. 2780-2782, 1995.
[33]. T.B. Simpson, J.M. Liu, K.F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Opt., vol. 9, pp. 765-784, 1997.
[34]. S.K. Hwang and J.M. Liu, “Attractors and basins of the locking-unlocking bistability in a semiconductor laser subject to strong optical injection,” Opt. Communication, vol.169, pp. 167-176, 1999.
[35]. S.K. Hwang and J.M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Communication, vol. 183, pp. 195-205, 2000.
[36]. J. Jacquet, M. Sotom, O. Gautheron, F. Poingt, O. Le Gouezigou, D. Leclerc,
J.Benoit, “Flat FM response without thermal dip for an optimized two section phase tunable DFB laser,” pp. 513-516.
[37]. Chih-Hao Chang, Lukas Chrostowski and Connie Chang-Hasnain, “Fequency response enhancement of injection-locked lasers,” 2002 Optical Society of America.
[38]. X. Zhao, M. Moewe, L. Chrostowski, C. H. Chang, R. Shau, M. Ortsiefer, M. C. Amann and C. J. Chang-Hasnain, “28 GHz optical injection-locked 1.55 µm VCSELs” Electronics Letters 15th April 2004 vol. 40 no. 8.
[39]. Sheng-Kwang Hwang, “Modulation and dynamical characteristics of high-speed semiconductor lasers subject to optical injection,” Ph.D. Dissertation.
[40]. Gnitaboure Yabre, “Effect of relatively strong light injection on the chirp to power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” IEEE Journal of Lightwave Technology, vol. 14, no. 10, October 1996, pp. 2367-2373.
[41]. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Optics Communications 183, 2000, pp. 195-205.
[42]. T.B. Simpson and J.M. Liu, “Phase and amplitude characteristics of nearly
degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys, vol. 73, no. 5, pp. 2587-2589, 1993.
[43]. J.M. Liu and T.B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron., vol. 30, no. 4, pp. 957-965, 1994.
[44]. T.B. Simpson, J.M. Liu, A. Gavrielides, “Small signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol. 32, pp. 1456-1468, 1996.
[45]. C.H. Henry, “Phase noise in semiconductors,” J. Lightwave Technol., vol.LT-4, no. 3, pp. 298-311, 1986.
[46]. Y. Yamamoto, S. Machida, O. Nilsson, “Amplitude squeezing in a pump noise
suppressed laser oscillator,” Phys. Rev. A, vol. 34, no. 5, pp. 4025-4042,1986.
[47]. G.P. Agrawal and N.K. Dutta, Long-Wavelength Semiconductor Lasers, New
York: Van Nostrand Reinhold, 1986.
[48]. T.B. Simpson and J.M. Liu, “Spontaneous emission, nonlinear optical coupling,
and noise in laser diodes,” Opt. Commun., vol. 112, pp. 43-47, 1994.
[49]. K.J. Vahala and M.A. Newkirk, “Parasitic-free modulation semiconductor lasers,” IEEE J. Quantum Electron., vol. 25, no. 6, pp. 1393-1398, 1989.
[50]. Robert Olshansky, Paul Hill, Vincent Lanzisera, and William Powazinik, “Frequency response of 1.3µm InGaAsP high speed semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 9, pp. 1410-1418, 1987.
[51]. Marek Osinski, and Jens Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE Quantum Electronics. vol. 23, no. 1, January 1987.
[52]. T. B. Simpson, F. Doft, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation
and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonic
Technol. Lett., vol. 13, no. 8, August 2001.
[53]. John D. Ralston, Stefan Weisser, Ignacio Esquivias, Eric C. Larkins, Josef Rosenzweig, Paul J. Tasker, and Joachim Fleissner, “Control of differential gain, nonlinear gain, and damping factor for high-speed application of GaAs based MQW lasers,” IEEE Journal of Quantum Electronics, vol. 29, no. 6, June 1993.
[54]. S . Weisser, I. Esquivias, J. D. Ralston, J. Rosensweig, A. Schijnfelder, E. C. Larkins, and J. Fleissner, “ Influence of facet reflectivity on the differential gain and K-factor in high-speed GaAs/AlGaAs and InGaAs/GaAs MQW lasers,” IEEE 1992.
[55]. David Klotzkin, Kishore Kamath, Karen Vineberg, Pallab Bhattacharya,
Ramana Murty, and Joy Laskar, “Enhanced modulation bandwidth of InGaAs
GaAs self-organized quantum-dot lasers at cryogenic temperatures: role of carrier relaxation and differential Gain,” IEEE Photonic Technology Letters,
vol. 10, no. 7, July 1998.
[56]. Jian-Min Tian, “Frequency chirping in directly modulated semiconductor lasers subject to external optical injection,” Master’s Thesis
[57]. Atsushi Murakami, Kenta Kawashima, and Kazuhiko Atsuki, “Cavity resonance
shift and bandwidth enhancement in semiconductor lasers with strong light
injection,” IEEE Quantum Electronics. vol. 39, no. 10, October 2003
[58]. Kam Y.Lau. and Amnon Yariv, “Ultra-high speed semiconductor lasers,” IEEE Journal of Quantum Electronics. vol. QE-21, no. 2, February 1985
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top