跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏凱
研究生(外文):Po-kai Wang
論文名稱:居家醫療機器人運動規劃系統之研究
論文名稱(外文):Motion Planning for Intelligent HomMed Robot System
指導教授:羅仁權羅仁權引用關係
指導教授(外文):R. C. Luo
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:99
中文關鍵詞:居家醫療看護機器人避障弁軌跡路徑圖運動控制系統及時定位雷射測距儀
外文關鍵詞:Robotobstacle avoidancereal-time localizationtrajectory path sketchLaser Range Finder
相關次數:
  • 被引用被引用:1
  • 點閱點閱:708
  • 評分評分:
  • 下載下載:257
  • 收藏至我的研究室書目清單書目收藏:2
近年來,由於世界各國都積極投入機器人的研發,也成它a運用在釵h領域上,如工廠自動化、醫院自動化、軍事、娛樂、太空探險、服務系統以及代替人類在危險地區工作等等,但是機器人如何在未知的外在環境裡正確地移動到使用者所指定之目的地而不會在過程中碰撞到靜態或動態障礙物是一個非常基本且重要的主題。
本論文目標為發展居家醫療看護機器人”HomMed Robot”之運動規劃,機器人可由本身架設之儀器而達到多項弁遄A如避障弁遄A並安全的完成任務。利用作者所編撰的軟體架構可以同時得到釵h相關的資料,如機器人本身在環境中的及時定位,航行過之軌跡路徑圖,並可以由及時記錄軌跡路徑圖清楚地知道機器人位於環境中的某位置和方向。作者也利用雷射測距儀提出一套避障之演算法,在動態環境裡達到避障之弁遄C最後,我們己經成它a展示出避障模式和運動控制系統。
在論文的最後,為了使用者的便利,我們也提供了行為控制和直接控制的兩種模式,以方便使用者用圖控或是命令的方式來靈活操控機器人,我們也使用行動機器人來實現此一套智慧型運動控制系統,並成永狻僑撮z型運動控制系統的可行性及可靠性,且展現出此機器人能順利且平滑的行走。
Recently, the internet based robotic systems have been successfully applied to factory automation, dangerous environments, hospitals, entertainment, space exploration, farmland, military, service, etc. Users can easily know what happens and control the situation through remote supervisory control interface of a robot system. Internet based control systems can take all advantages of the multimedia communication and worldwide features, but the shared bandwidth due to the public feature and uncertain latency may cause the system failure and unstable on task performance.
The objective of this thesis is to develop the motion planning for Home-care medical robot, which achieve multiple functions to complete the tasks safely based on multiple sensors. We have developed software structure of real-time localization and trajectory path sketch. The information about the position and orientation of the robot can be acquired from trajectory path sketch. In this paper an obstacle avoidance algorithm using LRF (Laser Range Finder) for the robot to avoid obstacle in the dynamic environment has been developed. We have successfully demonstrated the modes of obstacle avoidance and the motion control system.
Finally, it is more convenient and efficient for operators to control an medical robot by selecting behavior control mode or direct control mode on the interface with GUI or human-language-like commands. The system is implemented on our autonomous mobile robot, and these experimental results demonstrate the reliability and flexibility.
誌 謝……………………………………………………………………………….i
中文摘要………………………………………………………………………………ii
Abstract……………………………………………………………………………….iii
Table of Contents……………………………………………………………………..iv
List of Figures………………………………………………………………………..vi
List of Tables………………………………………………………………………...viii
Chapter 1 Introduction……………………………………………………………...…1
1.1 Motivation………………………………………………………………...…1
1.2 Objectives.………………………………………………………………...…3
1.3 Major Issues and Challenges.………………………………………………..4
1.4 Thesis Organization………………………………………………………….5
Chapter 2 Literature Review…………………………………………………………..6
2.1 Review of Motion Planning…………………………………………………6
2.1.1 Global Path Planning………………………………………………….7
2.1.2 Local Path Planning…………………………………………………...9
2.1.3 Smooth Path Planning………………………………………………..13
2.2 Review of Obstacle Avoidance System for Mobile Robot………………..14
2.2.1 Modes of Sensory System for Obstacle Avoidance………………….17
2.2.2 The Variety of Objects for Obstacle Avoidance……………………...23
2.3 Review of Intelligent Medical Robot System……………………………...29
2.3.1 Talking Cuddling Robot for Elderly of Ifbot…………………………30
2.3.2 A Medical and Surgical Robot of HOSPI……………………………31
Chapter 3 System Architecture of the HomMed Robot……………………………35
3.1 Introduction………………………………………………………..……….35
3.2 Main Control and Architecture……………………………………………..37
3.2.1 Hardware Architecture……………………………………….………37
3.2.2 Software Architecture……………………………………...…………38
3.3 Sensory System……………………………………………………….……40
3.3.1 Ultrasonic Sensor Detection……………………………….…………41
3.3.2 CCD Sensor Detection……………………………………………….42
3.3.3 3D Laser Range Finder Sensor Detection……………………………42
3.4 Communication System……………………………………………………52
3.4.1 Wireless LAN……………………………………………………..….52
3.4.2 IPC (Inter-Process Communication)…………………………………53
3.5 Motion Control System…………………………………………………..54
3.6 Power System………………………………………………………………58
Chapter 4 Motion Planning System for Obstacle Avoidance of the HomMed Robot..62
4.1 Introduction………………………………………………………………...62
4.2 Coordinate System……………………………………………………….63
4.3 Localization System. ………………………………………………………66
4.4 Motion Control Agent……………………………………………….......…71
4.4.1 Command Control……………………………………………………73
4.4.2 Velocity Control……………………………………………………74
4.5 Obstacle Avoidance System………………………………………………..75
4.6 Applications of Obstacle Avoidance………………………………….........80
4.6.1 Scenario for Narrow Corridor Environment…………………............81
4.6.2 Scenario for N-type environment.........................................................82
4.6.3 Scenario for moving obstacle environment..........................................83
Chapter 5 Experimental Results…………………………………………………….84
5.1 Static Collision Avoidance…………………………………………………84
5.1.1 Narrow Corridor Environment……………………………………….85
5.1.2 N-type Environment………………………………………………….87
5.2 Dynamic Collision Avoidance……………………………………………...90
5.2.1 Moving Obstacle Environment……………………………………....90
Chapter 6 Conclusion and Future Works…………………………………………….93
Chapter 7 Contributions……………………………………………………………...94
Reference …………………………………………………………………………….95
Appendix A…………………………………………………..………………………99
[1]“Planning in Continuous Spaces”, http://msl.cs.uiuc.edu/planning/node60.html.
[2]S. Aydin, and H. Temeltas, “A novel approach to smooth trajectory planning of a mobile robot,” Proceedings of the IEEE Advanced Motion Control, 2002. 7th International Workshop on Advanced Motion Control, 3-5 Jul. 2002, pp.472 – 477.
[3]X. Zou, and C. Zixing, “Environment modeling based on AVBN method for mobile robot,” Proceedings of the IEEE Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on Intelligent Control and Automation, Vol.2, 10-14 Jun. 2002, pp.1205-1209.
[4]M. Yamamoto, Y. Isshiki, and A. Mohri, “Collision free minimum time trajectory planning for manipulators using global search and gradient method,” Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Vol.3, 12-16 Sept. 1994, pp.2184-2191.
[5]P. Pignon, T. Hasegawa, and J. Laumond, “Optimal obstacle growing in motion planning for mobile robots,” Proceedings IROS '91. IEEE/RSJ International Workshop on Intelligent Robots and Systems, Vol.2, 3-5 Nov. 1991, pp.602 – 607.
[6]O. Brock, and O. Khatib, “High-speed navigation using the global dynamic window approach,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.1, 10-15 May 1999, pp.341 – 346.
[7]Y. S. Nam, B. H. Lee, and M. S. Kim, “View-time based moving obstacle avoidance using stochastic prediction of obstacle motion,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.2, 22-28 Apr. 1996, pp. 1081 – 1086.
[8]N. Ishiura., H. Sawada, and S. Yajima, “Minimization of binary decision diagrams based on exchanges of variables,” Proceedings of the IEEE International Conference on Computer-Aided Design, Vol.2, 11-14 Nov. 1991, pp.472 – 475.
[9]M. G. Park, J. H. Jeon, and M. C. Lee, “Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing,” Proceedings of the IEEE International Symposium on Industrial Electronics, Vol.3, 12-16 June 2001, pp.1530 – 1535.
[10]P. Vadakkepat, K. C. Tan, and M. L. Wang, “Evolutionary artificial potential fields and their application in real time robot path planning,” Proceedings of the 2000 Congress on Evolutionary Computation, Vol.1, 16-19 July 2000, pp. 256 – 263.
[11]C. W. Warren, “Global path planning using artificial potential fields,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.1, 14-19 May 1989, pp.316 – 321.
[12]S. Ratering, and M. Gini, “Robot navigation in a known environment with unknown moving obstacles,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.3 2-6 May 1993, pp.25 – 30.
[13]J. Borenstein, and Y. Koren, “The vector field histogram-fast obstacle avoidance for mobile robots,”, IEEE Transactions on Robotics and Automation, Vol. 7, Issue 3, Jun. 1991, pp.278 – 288.
[14]D. A. Bell, J. Borenstein, S. P. Levine, Y Koren, and J. Jaros, “An assistive navigation system for wheelchairs based upon mobile robot obstacle avoidance,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.3, 8-13 May 1994, pp.2018 – 2022.
[15]R. Simmons, “The curvature-velocity method for local obstacle avoidance,”, Proceedings of the IEEE International Conference on Robotics and Automation, Vol.4, 22-28 April 1996, pp.3375 – 3382.
[16]R. C. Luo, Tung Y. Lin, Te Y. Hsu, and P. K. Wang, “Multisensor Controlled Obstacle Avoidance and Navigation of Intelligent Security Robot,” 2005 IEEE International Conference on Industrial Electronics (IECON’ 2005), North Carolina, USA, Nov. 2005, pp. 1827-1832.
[17]S. O. Lee, Y. J. Cho, H. B. Myung, B. J. You, S. R. Oh, “A stable target-tracking control for unicycle mobile robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), Vol.3, 2000, pp.1822-1827.
[18]L. E. Parker, B. A. Emmons, “Cooperative multi-robot observation of multiple moving targets,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.3, 1997, pp.2082-2089.
[19]H. Kobayashi, M. Yanagida, “Moving object detection by an autonomous guard robot,” Proceedings of the 4th IEEE International Workshop on Robot and Human Communication, TOKYO, 1995, pp.323-326.
[20]http://www.sok.co.jp/.
[21]Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura, S. Yuta, “Some results of the test operation of a security service system with autonomous guard robot,” 26th Annual Conference of the IEEE on Industrial Electronics Society (IECON 2000), Vol.1, 2000, pp.405-409.
[22]Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura, S. Yuta, “Security service system using autonomous mobile robot,” IEEE Proceedings of the SMC '99 Conference on Systems, Man, and Cybernetics, Vol.4, 1999, pp.825-829.
[23]T. Kajiwara, J. Yamaguchi, J. Kanemoto, “A Security Guard Robot Which Patrols Map Information,” Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems '89 (IROS 89), pp.504-511.
[24]A. Bradshaw, “The UK Security and Fire Fighting Advanced Robot project,” IEE Colloquium on Advanced Robotic Initiatives, UK, 1991, pp. 1/1-1/4.
[25]http://blogs.ycon.net/akta/2004/12/05/ifbot-talking-cuddling-robot-for-elderly.
[26]http://www.istis.sh.cn/list/list.asp?id=2147.
[27]R. C. Luo, T. Y. Hsu, P. K. Wang, and K. L. Su, ”Multisensors Based on Dynamic Navigation for an Intelligent Security Robot,” The 8th International Conference on Automation Technology, Taichung, Taiwan, May 2005, pp. 504-509.
[28]R. C. Luo, T. Y. Lin, T. Y. Hsu, and P. K. Wang, “Multisensor    Controlled Obstacle Avoidance and Navigation of Intelligent Security Robot,” 2005 IEEE International Conference on Industrial Electronics (IECON’ 2005), North Carolina, USA, Nov. 2005, pp. 1827 - 1832.
[29]http://www.sick.com.tw/.
[30]D. Lee, T. Y. Ku, K. D. Moon, S. G. Lee, “Development of middleware based control system for a service robot”, IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering , Vol.3, 28-31 Oct. 2002, pp. 1550 - 1553.
[31]T. Shang, and S. Wang, “Analysis of environmental factors limiting humans' obstacle avoidance ability”, Proceedings of the 2005 International Conference on Active Media Technology, 19-21, May 2005, pp.369 – 374.
[32]A. R. Jimenez, R. Ceres, and F. Seco, “A laser range-finder scanner system for precise manoeuver and obstacle avoidance in maritime and inland navigation”, Proceedings of 46th International Symposium Electronics, 16-18 Jun. 2004, pp.101 - 106.
[33]S. Patel, S. H. Jung, J. P. Ostrowski, R. Rao, and C. J. Taylor, “Sensor based door navigation for a nonholonomic vehicle”, 2002 IEEE International Conference on Robotics and Automation, Vol. 3, 11-15 May 2002, pp. 3081 - 3086.
[34]R. Swain-Oropeza, M. Devy, and S. Hutchinson, “Sensor-based navigation in cluttered environments”, Proceedings. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, 29 Oct. 3 Nov. 2001, pp.1662 – 1669.
[35]M. Bennewitz, W. Burgard, and S. Thrun, “Learning motion patterns of persons for mobile service robots”, 2002 IEEE International Conference on Robotics and Automation, Vol.4, 11-15 May, pp.3601 – 3606.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 36. 薛怡珍、李國忠、邱祈榮、賴明洲、劉淑芬,2002,陳有蘭溪流域地景變遷之分析,中華林學季刊,35(4):375-386。
2. 36. 薛怡珍、李國忠、邱祈榮、賴明洲、劉淑芬,2002,陳有蘭溪流域地景變遷之分析,中華林學季刊,35(4):375-386。
3. 34. 馮豐隆、黃志成,1997,惠蓀林場土地利用之地景排列和變遷,中華林學季刊,30(4):387~400。
4. 34. 馮豐隆、黃志成,1997,惠蓀林場土地利用之地景排列和變遷,中華林學季刊,30(4):387~400。
5. 31. 張俊彥,2000,從景觀生態之觀點探討農村地區之角色與規劃,科學農業,第48 卷第1 期,pp:1-12。
6. 31. 張俊彥,2000,從景觀生態之觀點探討農村地區之角色與規劃,科學農業,第48 卷第1 期,pp:1-12。
7. 26. 林裕彬、吳振發、鄧東波,2004,景觀生態面指數分析汐止地區1990~2001年土地利用時空間鑲嵌特徵,都市與計劃,Vol.31, No.3, pp.239∼268
8. 26. 林裕彬、吳振發、鄧東波,2004,景觀生態面指數分析汐止地區1990~2001年土地利用時空間鑲嵌特徵,都市與計劃,Vol.31, No.3, pp.239∼268
9. 25. 林裕彬、鄧東波、吳振發,2001b,景觀生態計量方法於農業景觀生態系統之空間結構探討,農業工程學報,47(2):.74-91。
10. 25. 林裕彬、鄧東波、吳振發,2001b,景觀生態計量方法於農業景觀生態系統之空間結構探討,農業工程學報,47(2):.74-91。