跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳舜鼎
研究生(外文):Shun-Ting Chen
論文名稱:蟲草素誘發肝癌細胞(HA22T/VGH)死亡機轉之探討
論文名稱(外文):The effect of cordycepin on inducing cell death in human hepatoma HA22T/VGH cells
指導教授:張恒鴻張恒鴻引用關係陳裕仁陳裕仁引用關係
指導教授(外文):Hen-Hong ChangYu-Jen Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:傳統中國醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:128
中文關鍵詞:蟲草素肝癌細胞凋亡細胞分裂風暴
外文關鍵詞:cordycepinhepatomaHA22T/VGHapoptosismitotic catastrophe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:824
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自1984年起,癌症便一直是台灣地區人民死因之首位,而其中,肝癌更是一直獨佔鰲頭,廿年來,醫學科技雖有長足的進步,但對肝癌的治療卻始終停滯不前,因而從傳統中藥當中尋找有效藥物便成了另一個希望。
冬蟲夏草在傳統醫學上,原以補益功能為主。更是許多大陸醫家用於治療癌症患者的補益藥物,他們認為冬蟲夏草具有扶正袪邪之功,而能用於癌症治療之上。在冬蟲夏草的眾多成份中,蟲草素是其中具有抗癌作用的主要成份之一,我們將進行研究蟲草素對肝癌細胞的影響,以及未來用於治療肝癌的可能性。
由於B型肝炎病毒是造成台灣地區人民形成肝癌的主要原因,因而我們設計使用具有B型肝炎病毒DNA序列的中國男性肝癌細株HA22T/VGH為實驗的對象,同時加入不同濃度的蟲草素,以觀察是否會造成HA22T/VGH細胞株的死亡及可能之死亡途徑。
研究結果顯示:隨著時間及劑量之增加,蟲草素對HA22T/VGH細胞株的生長抑制亦隨之增加,最高可達83%。而造成HA22T/VGH細胞株死亡的途徑則包括細胞分裂風暴及細胞凋亡。在加藥處理後的HA22T/VGH細胞株可以見到近40%具有細胞分裂風暴之形態學特徵,同時亦使G2/M phase細胞比例從10.6%上升至16.3%;而細胞凋亡的比例則將近有13%,其中啟動之路徑則包含有Caspase路徑及非Caspase路徑。
蟲草素應具有對抗肝癌細胞之作用,同時亦呼應傳統醫學上冬蟲夏草「扶正袪邪」之效,但蟲草素是否可以直接用於治療肝癌病患,則需進一步的研究發展。
Cancer disease was the primarily killer of the people in Taiwan since 1984. Hetaptoma has been monopolizing the head among them. Although medical science and technology make long-term progress though past twenty years, there were no satisfied treatment and result about hepatoma. So the the traditional Chinese medicine becomes another hope of therapy for hepatoma.
Cordyceps sincesis (Berk.) Sacc. is a supplement in China's traditional medical. Lots of Chinese medical physicians used it for cancer patient supplement, just because they thought it got the function to support right and dispel evil, so that it could be helpful for cancer treatment. In the numerous compositions of Cordyceps sincesis (Berk.) Sacc., one of the main compositions for antineoplasm is cordycepin. Therefore we want to study that the cordycepin impacts on liver neoplasm cells and the possibility for treating of hepatoma in the future.
Because the hepatitis virus B is the main reason that cause hepaotma in Taiwan. Therefore we use HA22T/VGH human hamatoma cell line who encode with hepatitis virus B DNA from a male Chinese to investigate the cordycepin target on it with different concentrations and time. In order to observe whether will cause the death of HA22T/VGH cell line and possible death ways, we use equipments of cell counter chamber, microscope, flow cytometer, DNA electrophoresis and western blots ect. to complete it.
The results show that with the increase of the time and dosage of cordycepin, the growth of HA22T/VGH cell line is suppressed and the inhibition rate can reach as high as 83%. The possible pathways of HA22T/VGH cell line death include mitotic catastrophe and apoptosis. The morphology characteristics of mitotic catastrophe was nearly 40% in the HA22T/VGH cells treated with cordycepin, and the percentage of G2/M phase increase from 10.6% to 16.3% was observed. Almost 13% cell will undergo apoptosis, and the pathways of apoptois include caspase-dependent and caspase-independent.
According to the experimental results, We can suppose that the cordycepin get the function to against hepatoma, it also echo the concept of support right and dispel evil of Cordyceps sincesis (Berk.) Sacc. in traditional Chinese medicine. However, could the cordycepin be used for hepatoma therapy, it still need further research to support it.
第一章 肝癌與冬蟲夏草之初探
第一節 研究背景及目的...................................1
第二節 中醫腫瘤學之淺談.................................5
第三節 冬蟲夏草與蟲草素之簡介............................11
第四節 癌細胞死亡形態之初探..............................20

第二章 研究方法與材料
第一節 細胞培養.........................................39
第二節 藥物之處理........................................39
第三節 細胞生長抑制率之測量...............................40
第四節 細胞形態(Morphology)之觀察........................41
第五節 細胞週期(Cell Cycle)之測量........................43
第六節 細胞凋亡比例之量測.................................46
第七節 粒線體膜電位之量測.................................47
第八節 Caspase family活性之量測..........................49
第九節 DNA電泳..........................................50
第十節 西方墨點法(Western Blot)之分析.....................51

第三章 實驗結果
第一節 細胞數量及細胞生長抑制率............................55
第二節 細胞形態(Morphology)之變化.........................57
第三節 細胞週期(Cell Cycle)之變化.........................60
第四節 細胞凋亡比例.......................................62
第五節 粒線體膜電位之變化..................................62
第六節 Caspase family活性之變化...........................63
第七節 DNA電泳結果........................................64
第八節 西方墨點法(Western Blot)之結果......................65

第四章 討論
第一節 蟲草素與HA22T/VGH之生長抑制.........................69
第二節 蟲草素與HA22T/VGH細胞形態之變化......................70
第三節 蟲草素與HA22T/VGH細胞之DNA斷裂......................70
第四節 蟲草素與HA22T/VGH細胞週期之變化......................73
第五節 蟲草素與HA22T/VGH細胞凋亡...........................75
第六節 蟲草素與HA22T/VGH細胞分裂風暴.......................78
第七節 冬蟲夏草與扶正袪邪之相關性...........................79
第八節 總結...............................................81

第五章 結論與建議.........................................82

表一 蟲草素對HA22T/VGH之生長抑制...........................99
表二 蟲草素對Hep3B之生長抑制...............................100
表三 Caspase Inhibitors對蟲草素抑制HA22T/VGH生長之影響......101
表四 細胞分裂風暴比例.......................................102
表五 Sub-G1百分比.........................................103
表六 細胞週期之變化........................................104
表七 進行細胞凋亡之細胞比例..................................105
表八 粒線體膜電位變化率......................................106
表九 Caspase Inhibitors對粒線體膜電位變化率之影響.............107
表十 Caspase family活性變化比值.............................108

圖一 HA22T/VGH肝癌細胞株之生長曲線..........................109
圖二 Liu’s stain染色法....................................110
圖三 Immunofluorescence Stain染色法........................111
圖四 PI Stain染色法........................................112
圖五 PI stain之流式細胞儀圖.................................113
圖六 PI and BrdU stain之流式細胞儀圖........................114
圖七 PI and Phospho-Histone H3 Stain之流式細胞儀圖..........115
圖八 細胞凋亡測試之流式細胞儀圖...............................116
圖九 粒線體膜電位變化之流式細胞儀圖............................117
圖十 Caspase family活性比值柱狀圖............................118
圖十一 DNA電泳圖.............................................119
圖十二 Western blotting of Caspase-3, 8, 9..................120
圖十三 Western blotting of Caspase-2, 7.....................121
圖十四 Western blotting of AIF, EndonucleaseG...............122
圖十五 Western blotting of cytochrome C, Smac and Omi.......123
圖十六 Western blotting of Bcl-2 and Bax....................124
圖十七 Western blotting of p53..............................125

附錄一 中醫腫瘤病因分析表.....................................126
附錄二 中醫腫瘤病機分析.......................................127
附錄三 B型肝炎病毒與肝癌之病因、病機演變........................128
附錄四 細胞死亡之型態.........................................129
附錄五 調控細胞凋亡的Bcl-2 Family.............................130
附錄六 細胞凋亡誘發途徑示意圖..................................131
[1] 中華民國行政院衛生署公報,民國九十四年
[2] Hwan Y. Yoo et al., “The Outcome of Liver Transplantation in Patients With Hepatocellular Carcinoma in the United States Between 1987 and 2001: 5-year Survival Has Improved Signigicantly With Time”, Journal of Clinical Oncology, 21(23), pp.4329-4335, December 2003
[3] Melanie B. Thomas, James L. Abbruzzese, “Opportunities for Targeted Therapies in Hepatocellular Carcinoma”, Journal of Clinical Oncology, 23(31), pp.8093-8108, November 2005
[4] Vincent T. DeVita, Jr. et al., Cancer Principles and Practice of Oncology, 7th Edition, Lippincott Williams and Wilkins, USA, 2005
[5] Solmi L, Nigro G, Roda E, “Therapeutic effectiveness of echo-guided percutaneous radiofrequency ablation therapy with a LeVeen needle electrode in hepatocellular carcinoma”, World Journal of Gastoenterology, 12(7), pp.1098-1104, 2006
[6] Huang YH et al., “The role of transcatheter arterial embolization in patients with resectable hepatocellular carcinoma: a nation-wide, multicenter study”, Liver International, 24(5), pp. 419-424, 2004
[7] Soderdahl G et al., “A prospective, randomized, multi-centre trial of systemic adjuvant chemotherapy versus no additional treatment in liver transplantation for hepatocellular carcinoma“, Transplant International, 19(4), pp. 288-294, 2006
[8] Gish RG, “Hepatocellular carcinoma: overcoming challenges in disease management”, Clinical Gastroenterology and Hepatology, 4(3), pp.252-261, 2006
[9] 程士德等,《內經》,初版,台北,知音出版社,民國七十九年
[10] 李岩,《腫瘤臨證備要》,第三版,台北,知音出版社,民國九十二年
[11] 吳謙,《醫宗金鑑》,新校版,台北,出版社不詳,民國八十一年
[12] 紀建軍,〈談內經對腫瘤病因病機的認識〉,《內蒙古中醫藥》,第四期,頁131,1994
[13] 陸馨,〈腫瘤的中醫病因病機淺析〉,《光明中醫》,第十五卷第八十九期,頁16~17,2000
[14] 楊柱、陳學習,〈腫瘤的中醫病因病機初探〉,《遼寧中醫雜誌》,第二十九卷第四期,頁197~198,2002
[15] 韓可祥,〈腫瘤病機治則思考〉,《安徽中醫臨床雜誌》,第十五卷第一期,頁52,2003
[16] 貫劍,〈略論王冰對中醫病因學的闡發〉,《上海中醫藥大學學報》,等十七卷第一期,頁38~40,2003
[17] 關幼波,〈中醫對乙型肝炎的治療〉,《雲南中醫中藥雜誌》,第十六卷第四期,頁35~38,1995
[18] 劉平,〈乙型肝炎、肝硬化、肝癌的中醫發病學及其基本病機演變規律的探討〉,《中西醫結合肝病雜誌》,第八卷增刊(上),1998
[19] 陳樹森、李智、杜杰,〈原發性肝癌的中醫治療研究進展概述〉,《實用中醫內科雜誌》,第十一卷第一期,1997
[20] 侯風剛等,〈原發性肝癌中醫單證證型專家觀點文獻分析〉,《南京中醫藥大學學報》,第十九卷第四期,頁244~249,2003
[21] 李永健等,〈2060例原發性肝癌中醫證候分布規律的臨床流行病學調查研究〉,《中國醫藥學報》,第十八卷第三期,頁144~146,2003
[22] 郭鍚勇、張俊巍、張之申,〈霍克斯蟲草與冬蟲夏草化學成分的比較研究〉,《中草藥》,第二十一卷第三期,頁109,1990
[23] 湯騰漢、汪昭武、陳勖瑝,〈冬蟲夏草之初步研究〉,《中國藥學會會誌》,第三卷第一期,頁1~4,1947
[24] Chen YJ et al., “Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells”, Life Sciences, 60(25), pp.2349-2359, 1997;
[25] Yamada H et al.,”Structure and Antitumor Activity of an Alkali-souble Polysaccharide from Cordyceps ophioglossoides”, CarbohydrateResearch, 125(1), pp.107-115, 1984
[26] 肖永慶、劉靜明、屠呦呦,〈冬蟲夏草化學成分研究I〉,《藥學通報》,第八卷第二期,頁32,1983
[27] 呂瑞錦,〈冬蟲夏草化學成份的研究〉,《藥學通報》,第十六卷第九期,頁567,1981
[28] Kneifel H et al., “Ophiocordin, an Antifungal Antibiotic of Cordyceps ophioglossoides”, Archives of Microbiology, 113(1-2), pp.121-130, 1977
[29] 楊蹻雄等,〈冬蟲夏草及其寄生昆蟲、人工培養蟲草菌絲體中微量元素的分析〉,《中草藥》,第十八卷第六期,頁259,1987
[30] 卿東懷、杜紅,〈冬蟲夏草對癌症患者的特殊治療功效〉,《天然產物研究與開發》,第12卷第2期,頁56,2000
[31] 許建中、沈子珩,〈人工培養冬蟲夏草配合化療中、晚期惡性瘤的臨床觀察〉,《中國藥師》,第五卷第十二期,頁746~748,2002
[32] 吳慶光、趙珍東. 王宗偉,〈冬虫夏草抗腫瘤作用研究進展〉,《中醫藥導報》,第十一卷第六期,頁80~82,2005
[33] Cunningham KG et al., “Cordycepin, a Metabolic Product isolated from Cultures of Cordyceps militaris”, Nature, 166(4231), p.p.949, 1950
[34] 彭俊峰等,〈蟲草素與DNA作用的光譜研究〉,《光譜學與光譜分析》,第二十四卷第七期,頁858~861,2004
[35] Cory JG et al., “Incorporation of cordycepin (3'-deoxyadenosine) into ribonucleic acid and deoxyribonucleic acid of human tumor cells”, Biochimica et biophisica acta., 130(4), pp.646-653, 1965
[36] Moshe Siev, Robert Weinberg, Sheldon Penman, “The Selective Interruption of Nucleolar RNA Synthesis in HeLa Cell by Cordycepin”, The Journal of Cell Biology, 41, pp.510-520, 1969
[37] Penman S, Rosbash M, Penman M., “Messenger and heterogeneous nuclear RNA in HeLa cells: differential inhibition by cordycepin”, Proceedings of the National Academy of Sciences of the United States of America, 67(4), pp.1878-1885, 1970
[38] Darnell J.E., Wall L.P.R., Adensnik M., “Polyadenylic Acid Sequences: Role in Conversion of Nuclear RNA into Messenger RNA”, Science, 174, pp.507-510, 1971
[39] Jozef Mendecki, Se Yong Lee, George Brawerman, “Characteristics of the Polyadenylic Acid Segment Associated with Messenger Ribonucleic Acid in Mouse Sarcoma 180 Ascites Cells”, Biochemistry, 11(5), pp.792-798, 1972
[40] Angelo Calado et al., “Deciphering the Cellular Pathway for Transport of Poly(A)-Binding Protein II”, RNA, 6, pp.245-256, 2000
[41] Nakamura K et al., “Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation”, Anticancer Research, 26(1A), pp.43-47, 2006
[42] Yashikawa N et al., “Antitumour activity of cordycepin in mice”, Clinical and Experimental pharmacology and Physiology, 31, pp.51-53, 2004
[43] Lallas GC, Courtis N, Havredaki M, “K562 cell sensitization to 5-fluorouracil- or interferon-alpha-induced apoptosis via cordycepin (3'-deoxyadenosine): fine control of cell apoptosis via poly(A) polymerase upregulation”, The International Journal of Biological markers, 19(1), pp. 58-66, 2004
[44] Kodama EN et al., “Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells”, Biochemical Pharmacology, 59(3), pp. 273-281, 2000
[45] Mathew PA, Ellis LK, Studzinski GP, “Enhanced messenger RNA stability and differentiation of HL 60 cells treated with 1,25-dihydroxyvitamin D3 and cordycepin”, Journal of Cell Physiology, 140(2), 212-218, 1989
[46] Podobed OV et al., “The effect of cordycepin on the synthesis of nuclear and cytoplasmic D-RNA in mouse liver cells and Ehrlich's carcinoma cells”, Molecular Biology, 7(3), pp.273-280, 1973
[47] Plagemann PG, “Effects of 3'deoxyadenosine (cordycepin) and 2'deoxyadenosine on nucleoside transport, macromolecular synthesis, and replication of cultured Novikoff hepatoma cells”, Archives of Biochemistry and Biophysics, 144(1), pp.401-412, 1971
[48] Ioannidis P et al., “The polyadenylation inhibitor cordycepin (3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels”, Oncogene, 18(1), pp.117-125, 1999
[49] Hiraoka W, Kuwabara M, Sato F, “Effects of 3'-deoxyadenosine (cordycepin) on the repair of X-ray-induced DNA single- and double-strand breaks in Chinese hamster V79 cells”, Journal of Radiation Research, 31(2), pp.156-161, 1990
[50] Hiraoka W et al., ” Metabolic effects of 3'-deoxyadenosine (cordycepin) and 2-halo-3'-deoxyadenosine on repair of X-ray-induced potentially lethal damage in Chinese hamster V79 cells”, Radiation Research, 114(2), pp.231-239, 1988
[51] Robertson JB, Williams JR, Little JB, “Enhancement of radiation killing of cultured mammalian cells by cordycepin”, International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 34(5), pp.417-429, 1978
[52] Thomadaki H, Tsiapalis CM, Scorilas A, “Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction”, Biological Chemistry, 386(5), pp.471-480, 2005
[53] Aravindan T, Nair VR, “Differential effect of cordycepin on S and G2 phases of cell cycle in plasmodia of Physarum polycephalum Schw”, Indian Journal of Experimental Biology, 29(9), pp.801-804, 1991
[54] Zieve GW, Feeney RJ, Roemer EJ, “Cordycepin disrupts the microtubule networks and arrests Nil 8 hamster fibroblasts at the onset of mitosis”, Cell Motility and the Cytoskeleton, 7(4), 337-346, 1987
[55] Zhou X et al., ” Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells”, European Journal of Pharmacology, 453(2-3), pp.309-317, 2002
[56] Rottenberg ME et al., “ Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model“, The Journal of Infectious Diseases, 192(9), pp.1658-1665, 2005
[57] Williamson J, Macadam RF, “Drug effects on the fine structure of Trypanosoma rhodesiense: puromycin and its aminonucleoside, Cordycepin and Nucleocidin”, Transaction of the Royal Society of Tropical Medicine and Hygiene, 70(2), 130-137, 1976
[58] Aiyedun BA, Williamson J, Amodu AA, “The effect of cordycepin on tsetse-borne Trypanosoma vivax infections”, Acta Tropica., 30(4), pp.276-278, 1973
[59] Trigg PI, Gutteridge WE, Williamson J, “The effects of cordycepin on malaria parasites”, Transaction of the Royal Society of Tropical Medicine and Hygiene, 65(4), pp.514-520, 1971
[60] Kim JR et al., ” Larvicidal activity against Plutella xylostella of cordycepin from the fruiting body of Cordyceps militaris”, Pest Management Science, 58(7), pp.713-717, 2002
[61] Naula N et al., “Cordycepin in Schizosaccharomyces pombe: effects on the wild type and phenotypes of mutants resistant to the drug”, Current genetics, 43(6), pp.400-406, 2003
[62] Iwashima A et al., “Effect of thiamin on cordycepin sensitivity in Saccharomyces cerevisiae”, FEBS Letters, 311(1), pp.60-62, 1992
[63] Ahn YJ et al., ”Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp.”, Journal of Agricultural and Food Chemistry, 48(7), pp.2744-2748, 2000
[64] Rottman F, Guarino AJ, “The Inhibition of Purine Biosynthesis de Novo in Bacillus Subtilis by Cordycepin”, Biochemica et Biophysica Acta., 80, pp.640-647, 1964
[65] Xu FL et al., ” Effect of cordycepin on Hantaan virus 76-118 Infection of Primary Human Embryonic Pulmonary Bibroblasts -- Characterization of Apoptotic Effects”, Acta Virologica, 49(3), pp.183-193, 2005
[66] Henderson EE et al., “Inhibition of Epstein-Barr Virus-Associated Nuclear antigen (EBNA) Induction by (2',5')oligoadenylate and the Cordycepin analog: Mechanism of Action for Inhibition of EBV-induced Transformation”, Virology, 122(1), pp.198-201, 1982
[67] Nair CN, Panicali DL, “Polyadenylate sequences of human rhinovirus and poliovirus RNA and cordycepin sensitivity of virus replication”, Journal of Virology, 20(1), pp.170-176, 1976
[68] Hashimoto K, Simizu B, “Effect of cordycepin on the replication of western equine encephalitis virus”, Archives of Virology, 52(4), pp.341-345, 1976
[69] Weiss SR, Bratt MA, “ Effect of cordycepin (3'-deoxyadenosine) on virus-specific RNA species synthesized in Newcastle disease virus-infected cells“, Journal of Virology, 16(6), pp.1575-1583, 1975
[70] Becker Y, Olshevsky U, “Inhibition of Herpes simplex virus replication by cordycepin”, Israel Journal of Medical Sciences, 9(11), pp.1581-1585, 1973
[71] Mahy BW et al., “Multiplication of influenza virus in the presence of cordycepin, an inhibitor of cellular RNA synthesis”, Nature: New Biology, 243(127), pp.172-174, 1973
[72] Montefiori DC et al., “Phosphorothioate and Cordycepin Analogues of 2',5'-oligoadenylate: Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Infection in vitro”, Proceedings of the National Academy of Sciences of the United States of America, 86(18), pp.7191-7194, 1989
[73] Hitoshi Okada, Tak W. Mak, “Pathways of Apoptotic and Non-Apoptotic Death in Tumor Cell”, Nature reviews cancer, 4(8), pp.592-603, 2004
[74] Hayflick L及Moorhead PS, “The serial cultivation of human diploid cell strains”, Experimental Cell Research, 25, pp.585-621, 1961
[75] Dimri GP et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo”, Proceedings of the National Academy of Sciences of the United States of America, 92(20), pp.9363-9367, 1995
[76] Narita M et al., ” Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence”, Cell, 113(6), pp.703-716, 2003
[77] Campisi J, “Cellular senescence as a tumor-suppressor mechanism”, Trends in Cell Biology, 11(11), pp.27-31, 2001
[78] Alcorta DA et al., “Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts”, Proceedings of the National Academy of Sciences of the United States of America, 93(24), pp.13742-13747, 1996
[79] Kamijo T et al., “ Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF”, Cell, 91(5), pp.649-659, 1997
[80] Sage J et al., “ Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry”, Nature, 424(6945), pp.223-228, 2003
[81] Stein GH et al., “ Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts“, Molecular and Cellular Biology, 19(3), pp.2109-2117, 1999
[82] Bursch W et al., “ Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments“, Journal of Cell Science, 113, pp.1189-1198, 2000
[83] Takeshige K et al., “Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction”, The Journal of Cell Biology, 119(2), pp.301-311, 1992
[84] Huang WP, Klionsky DJ, “Autophagy in yeast: a review of the molecular machinery”, Cell Structure and Function, 27(6), pp.409-420, 2002
[85] Noda T, Ohsumi Y, “ Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast“, The Journal of Biological Chemistry, 273(7), pp.3963-3966, 1998
[86] Anglade P et al., ” Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease”, Histology and Pathohistology, 12(1), pp.25-31, 1997
[87] Tanaka Y et al., ” Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice”, Nature, 406(6798), pp.902-906, 2000
[88] Liang XH et al., “Induction of autophagy and inhibition of tumorigenesis by beclin 1”, Nature, 402(6762), pp.672-676, 1999
[89] Anna-Liisa Nieminen, “Apoptosis and Necrosis in Health and Disease: Role of Mitochondria”, International Review of Cytology, 224, pp.29-55, 2003
[90] Russell P, Nurse P, “cdc25+ functions as an inducer in the mitotic control of fission yeast”, Cell, 45(1), pp.145-153, 1986
[91] Roninson IB, Broude EV, Chang BD, “If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells”, Drug Resistance Updates, 4(5), pp.303-313, 2001
[92] Chakrabarti A, Chakrabarti S, “High yield of micronuclei and micronuclei premature chromosome condensation in a mouse tumor cell line cultured in vivo with prearrested mitotic metaphases”, Neoplasma, 34(5), pp.557-562, 1987
[93] Castedo M et al., “Cell death by mitotic catastrophe: a molecular definition”, Oncogene, 23(16), pp.2825-2837, 2004
[94] Guo Y et al., “Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria”, The Journal of Biological Chemistry, 277(16), pp.13430-13437, 2002
[95] Peart MJ et al., “Novel mechanisms of apoptosis induced by histone deacetylase inhibitors”, Cancer Research, 63(15), pp.4460-4471, 2003
[96] Perfettini JL et al., “NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope”, The Journal of Experimental Medicine, 199(5), pp.620-640, 2004
[97] Roumier T et al, “ Mitochondrion-dependent caspase activation by the HIV-1 envelope”, Biochemical Pharmacology, 66(8), pp.1321-1329, 2003
[98] Kerr JF, Wyllie AH, Currie AR, “ Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics“, British Journal of Cancer, 26(4), pp.239-257, 1972
[99] Ellis RE, Yuan JY, Horvitz HR, “Mechanisms and functions of cell death”, Annual Review of Cell Biology, 7, pp.663-698, 1991
[100] Jacobson MD, Weil M, Raff MC, “Programmed cell death in animal development”, Cell, 88(3), pp.347-354, 1997
[101] Budihardjo I et al., “Biochemical pathways of caspase activation during apoptosis”, Annual Review of Cell and Developmental Biology, 15, pp.269-290, 1999
[102] Kluck RM et al., ”The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol”, The Journal of Cell Biology, 147(4), pp.809-822, 1999
[103] Launay S et al., “Vital functions for lethal caspases”, Oncogene, 24(33), pp.5137-5148, 2005
[104] Thornberry NA, Lazebnik Y, “Caspases: enemies within”, Science, 281(5381), 1998
[105] Ho PK, Hawkins CJ, “Mammalian initiator apoptotic caspases”, The FEBS Journal, 272(21), pp.5436-53, 2005
[106] Fan TJ et al., “Caspase family proteasea and apoptosis”, Acta Biochimica et Biophysica Sinica, 37(11), pp.719-727, 2005
[107] Mulosevic J et al., “The DNA damage-induced decrease of Bcl-2 is secondary to the activation of apoptotic effector caspases”, Oncogene, 22(44), pp.6852-6856, 2003
[108] Gross A, McDonnell JM, Korsmeyer SJ, “BCL-2 family members and the mitochondria in apoptosis”, Genes & Development, 13(15), pp.1899-1991, 1999
[109] Uren AG, Coulson EJ, Vaux DL, “Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts”, Trends in Biochemical Sciences, 23(5), pp.159-162, 1998
[110] Yang Y et al., “Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli”, Science, 288(5467), pp.874-877, 2000
[111] Viktorsson K, Lewensohn R, Zhivotovsky B, “Apoptotic pathways and therapy resistance in human malignancies”, Advances in Cancer Research, 94, pp.143-196, 2005
[112] Saelens X et al., “Toxic proteins released from mitochondria in cell death”, Oncogene, 23(16), pp.2861-2874, 2004
[113] Norbury CJ, Zhivotovsky B, “DNA damage-induced apoptosis”, Oncogene, 23(16), pp.2797-2808, 2004
[114] Nakagawa T et al., “ Caspase-12 mediates endoplasmic reticulum specific apoptosis and cytotoxicity by amyloid-beta“, Nature, 403(6765), pp.98-103, 2000
[115] Orrenius S, Zhivotovsky B, Nicotera P, “Regulation of cell death: the calcium-apoptosis link”, Nature Reviews. Molecular Cell Biology, 4(7), pp.552-565, 2003
[116] Guicciardi ME, Leist M, Gores GJ, “Lysosomes in cell death”, Oncogene, 23(16), pp.2881-2890, 2004
[117] Chang C et al., “Induction of plasma protein secretion in a newly established human hepatoma cell line”, Molecular and Cellular Biology, 3(6), pp.1133-1137, 1983
[118] Knowles BB, Howe CC, Aden DP, “Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen”, Science, 209(4455), pp.497-499, 1980
[119] 孫艷,官杰,王琪,〈冬虫夏草對H22肝癌小鼠化療後免疫功能的影響〉,《中國基層醫藥》,第二期第九卷,127~128頁,2002
[120] Lu CX et al., “Apoptosis-inducing Factor and Apoptosis”, Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao, 35(10), pp.881-885, 2003
[121] Deitch AD, Sawicki SG, “Effcts of cordycepin on microbubules of cultured mammalian cells”, Experimental Cell Reearch, 118(1), pp.1-13, 1979
[122] Zieve GW, Roemer EJ, “Cordycepin rapidly collapses the intermediate filament networks into juxtanuclear caps in fibroblasts and epidermal cells”, Experimental Cell Reearch, 177(1), pp.19-26, 1988
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 樟芝菌絲體活化巨噬細胞誘發人類肝癌細胞凋亡之分子機制探討
2. 蛹蟲草發酵產物萃取液誘導人類及犬乳癌細胞凋亡機制之探討
3. 以細胞培養模式評估固態培養牛樟芝菌絲體萃取物之抗肝癌生物活性及其機制
4. 第一篇:Baicalein引發人類肝癌細胞計畫性死亡作用機轉的研究第二篇:Shikonin引發人類肝癌細胞計畫性死亡作用機轉的研究
5. 黃芩素誘導人類肝癌細胞(J5)細胞凋亡及抑制細胞轉移之分子機轉
6. 利用Hep3B肝癌細胞株探討桑黃與綠豆篁之抗癌功效。第一部份:誘導細胞凋亡之功能評估;第二部份:抗血管新生功能評估。
7. 深層發酵樟芝菌絲體乙醇萃取物對人類肺癌及肝癌細胞生長之影響與其作用機轉之探討
8. Actinodaphnine誘導細胞內nitricoxide、reactiveoxygenspecies及降低NF-kB活性導致人類肝癌Mahlavu細胞株計畫性死亡的研究
9. 迪皮質醇抑制二-甲氧基氫偶素及乳酸在肝癌細胞所引發的細胞凋亡機轉探討
10. 臺灣產番荔枝科乙醯生合成物與其抗癌作用機轉之探討
11. 靈芝抗癌成份引發肝癌細胞株凋亡之分子機制研究
12. 第一部份黃芩成分對人類肝癌細胞株之影響及其作用機制探討第二部份大豆乳酸菌發酵液抗乳癌功效評估及其作用機制探討
13. 利用肝癌細胞株HepG2來探討黑豆與Aspergillusawamori發酵之黑豆麴經不同溶劑萃取之粗萃物其抗癌功能之研究
14. 臺灣蜂膠衍生物誘導人類肝癌細胞凋亡機制探討
15. 蛋白質體及流式細胞儀分析樟芝萃取物對脂多醣誘發巨噬細胞RAW264.7抗發炎與凋亡之影響