跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邸凱澤
研究生(外文):Kai-tse Ti
論文名稱:mPE/澱粉奈米複合材料之製備及性質研究
論文名稱(外文):Preparation and Characterization of mPE/Starch Nanocomposites
指導教授:邱方遒
指導教授(外文):Fang-Chyou Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:176
中文關鍵詞:塑化澱粉聚乙烯奈米複合材料黏土熔融混煉相容化劑熔融混煉法光繞射儀改質黏土熱裂解聚乙烯
外文關鍵詞:Plastic starchPolyethyleneClayNanocompositesMelt blendingCompatibilizerdynamicafter
相關次數:
  • 被引用被引用:5
  • 點閱點閱:512
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試利用批次塑譜儀以熔融混煉法製備聚乙烯(mPE)/澱粉(starch)熱可塑性彈性體合膠。此外,利用可能的相容化劑(mPE-g-MA)及奈米相容化劑(mPE-g-MA/clay)比較合膠兩相介面間之相容性。奈米相容化劑是以改質黏土 (Cloisite 20A)與相容化劑mPE-g-MA以熔融混煉法製備。廣角X光繞射儀及穿透式電子顯微鏡實驗結果顯示,改質黏土以剝層奈米結構均勻分散於基材中,形成奈米複合材料。掃瞄式電子顯微鏡之影像觀察發現,添加塑化澱粉(TPS)更易與相容化劑進行酯化反應,使得分散於聚乙烯基材的塑化澱粉粒徑變小。添加奈米相容化劑之樣品經由熱重分析儀、動態機械分析儀及拉伸實驗結果顯示,熱裂解溫度、儲存模數及抗張強度與楊氏模數,相較於添加相容化劑之樣品皆明顯提升,顯示奈米相容化劑中的改質黏土有助於改善合膠的熱穩定性、剛性及其他機械性質。『吸水』及『生物分解性』實驗結果顯示,隨著樣品中澱粉含量及浸泡於活性污泥時間增加,試片之吸水率及生物分解性皆呈現上升趨勢。
In this study, an attempt to develop the blends of metallocene polyethylene (mPE)/maleic anhydride-grafted mPE (mPE-g-MA)/starch was conducted. In addition, the nanocompatibilizer (mPE-g-MA/clay) prepared with modified montmorillonite (Cloisite 20A) and compatibilizer (mPE-g-MA) through melt blending was employed. The effect of nanocompatibilizer on the properties of the blends was investigated by several techniques. XRD and TEM results confirmed that 20A was dispersed homogeneously and exfoliated in mPE matrix. The scanning electron microscope (SEM) images indicated the population of etched holes was fewer along with finer distribution for nanocomposites. The thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) results showed that thermal stability and storage modulus of mPE/starch blends were improved after adding nanocompatibilizer (mPE-g-MA/clay). Mechanical properties testing indicated the tensile strength and Young’s modulus of mPE/starch blends were improved after adding each of the compatibilizers (mPE-g-MA/clay), and the nanocompatibilizer yielded a higher efficiency. Water absorption content and biodegradation rate of the blends increased with an increase in starch content and an increase of exposuring time in activated sludge.
第1章 緒論 1
第2章 文獻回顧 5
2-1 mPE (Metallocene polyethylene-octene elastomer) 5
2-2 mPE的相關研究 6
2-3 澱粉結構介紹 9
2-4 澱粉糊化(gelatinization) 9
2-5 澱粉合膠 11
2-6 黏土(Clay) 15
2-6-1 種類及構造 15
2-6-2 蒙脫土 16
2-7 高分子/黏土奈米複合材料 17
2-7-1 奈米複合材料的定義 17
2-7-2 形成概論 17
2-7-3 製備 18
2-7-4 黏土分散形態[30, 31] 21
2-7-5 高分子/黏土奈米複合材料之發展近況 22
2-8 混煉機制與原理 31
2-9 生物分解性高分子的定義 34
第3章 實驗部分 36
3-1 材料 36
3-2 儀器設備 38
3-3 實驗步驟與流程 42
3-4 樣品製備 43
3-4-1 材料準備 43
3-4-2 塑化玉米澱粉 (TPS) 43
3-4-3 混煉合膠 44
3-4-4 熔融插層法製備奈米複合材料(Melt intercalation nanocomposites) 45
3-4-5 試片熱壓 46
3-4-6 裁切試片 46
3-5 傅立葉紅外線光譜(FTIR)分析 46
3-6 廣角X光繞射儀(WAXD)觀察 47
3-7 穿透式電子顯微鏡(TEM)黏土分散相型態觀察 48
3-7-1 TEM試片製備 48
3-7-2 TEM黏土分散相觀察 48
3-8 掃描式電子顯微鏡(SEM)相形態觀察 48
3-8-1 蝕刻(etched)淬斷面相形態觀察 48
3-9 熱性質分析測試 49
3-9-1 微差掃描熱卡計測試(DSC test) 49
3-9-2 動態機械分析儀測試(DMA test) 50
3-9-3 熱重分析儀測試(TGA test) 51
3-10 機械性質測試 51
3-10-1 拉伸試驗(Tensile test) 51
3-11 吸水性及生分解測試 53
第4章 結果與討論 54
4-1 合膠/奈米複合材料 熔融混煉扭力值結果 54
4-2 合膠 FTIR紅外光譜分析結果 56
4-3 Clay分散性 57
4-3-1 XRD分析 57
4-3-2 TEM分析 59
4-4 合膠/奈米複合材料 SEM相形態分析 60
4-5 合膠/奈米複合材料 熱性質分析 62
4-5-1 DSC測試結果 62
4-5-2 DMA測試結果 65
4-5-3 TGA測試結果 67
4-6 合膠/奈米複合材料 機械性質分析結果 70
4-6-1 添加未塑化澱粉(pristine starch)系統之機械性質分析結果 70
4-6-2 添加塑化澱粉(TPS)之機械性質分析結果 72
4-7 合膠/奈米複合材料吸水性及生物可分解性分析結果 74
4-7-1 吸水性分析 74
4-7-2 生物可分解性分析 75
第5章 結論 76
第6章 參考文獻 80
第7章 Appendix 169
1.G. J. L. Griffin, ACS Advances in Chemistry, Series No. 134, (1975)
2.I. Tamka, R. F. Stepto, and B. Dobler, Eur. Pat. Appl. 888 10130.0, Appl. 888 10548.3, U. S. Pat. 4,673, 438 , Warner-Lambert Co. (1987)
3.F. J. Rodriguez-Gonzalez, B. A. Ramsay, and B. D. Favis, “High performance LDPE/thermoplastic starch blends: A sustainable alternative to pure polyethylene”, Polymer, 44, 1571 (2003)
4.G. M. Benedikt, B. L. Goodall, “Metallocene Catalyzed Polymers”, Plastic Design Library, (1998)
5.“Additive for Metallocene Catalyzed Polymer”, International Conference, (1996)
6.S. Bensason, J. Minick, A. Moet, S. Chum, A. Hilter and E. Baer, “Classification of homogeneous ethylene-octene copolymers based on comonomer content”, J. Polym. Sci. Part B: Polym. Phys., 34, 1301 (1996)
7.戴宏哲, 賴森茂, 吳進三, 鐘鶴華, 沈曉復, 蕭耀貴, “改質劑對木粉/metallocene PE 機械性質之探討”, Proceedings of the 23rd R.O.C. Polymer Symposium, Jan., (2000)
8.賴森茂, 陳文智, 戴宏哲, 吳進三, 沈曉復, 蕭耀貴, “以雙氧水處理木粉對metallocene PE 強化物性之探討”, Proceedings of the 23rd R.O.C. Polymer Symposium, Jan., (2000)
9.S. M. Lai, W. C. Chen, C. S. Wu, H. T. Liao, H. L. Liao and H. F. Shen, “Graft Reaction of Maleic Anhydride onto Metallocene Based Polyethylene”, Proceedings of the 24th R.O.C. Polymer Symposium, Jan., (2001)
10.H. T. Liao, C. S. Wu , S. M. Lai, W. C. Chen, H. L. Liao, H. F. Shen and Y. K. Hsiao, “Synthesis and Properties of Acrylic Acid Modified Metallocene Based Polyethylene”, Proceedings of the 25th R.O.C. Polymer Symposium, Jan., (2002)
11.S. M. Lai, F. C. Chiu, T. Y. Chiu, “Fracture behaviors of PP/mPE thermoplastic vulcanizate via peroxide crosslinking”, Eur. Polym. J., 41, 3031 (2005)
12.C. S. Wu, H. T. Liao, “Influence of a compatibilizer on the properties of polyethylene-octene elastomer/starch blends”, J. Appl. polym. Sci., 86, 1792 (2002)
13.H. T. Liao, C. S. Wu, “Study on the properties of polyethylene-octene elastomer/wood flour blends”, J. Appl. polym. Sci., 88, 1919 (2003)
14.H. T. Liao, C. S. Wu, “Synthesis and characterization of polyethylene-octene elastomer/clay/ biodegradable starch nanocomposites”, J. Appl. polym. Sci., 97, 397 (2005)
15.Blanshard, J.M.V., Grazier, P.J. and Galliard, T. “Chemistry and Physics of Baking”, (Royal Society of Chemistry, London). 16, 105 (1986)
16.黃朝國, “生物可分解材料Bionolle與澱粉合膠之製備及性質研究’’, 中國文化大學, 碩士論文, 民國91年。
17.D. R. Coffin, M. L. Fishman, and P. H. Cooke, “Mechanical and microstructural properties of pectin/starch films”, J. Appl. Polym. Sci., 57, 663 (1995)
18.J. W. Park and S. S. Im, “Biodegradable polymer blends of poly (L-lactic acid) and gelatinized starch”, Polym. Eng. Sci., 40, 2539 (2000)
19.E. Pretsch, T. Clere, J. Seibl, and W. Simon, Table of Spectral Data for Structure Determination of Organic Compound, 2nd Edition, Springer-Verlag, New York, 15 (1989)
20.E. R. George, T. M. Sullivan, and E. H. Park, “Thermoplastic starch blends with a poly (ethylene-co-vinyl alcohol): Processability and physical properties”, Polym. Eng. Sci., 34, 17 (1994)
21.T. Seidenstücker, and H. G. Fritz, “Innovative biodegradable materials based upon starch and thermoplastic poly (ester-urethane) (TPU)”, Polym. Degrad. Stab., 59, 279 (1998)
22.吳進三, 賴森茂, 戴宏哲, 陳文智, 吳易凡, 蕭耀貴, “澱粉含量對生物分解性塑膠之物性之探討”, Proceedings of the 23rd R.O.C. Polymer Symposium, Jan., (2000)
23.劉小萍, 邱文英, 賴森茂, 董崇民, 蕭耀貴, 沈曉復, “澱粉-聚乙烯醇接枝共聚物之合成及生分解性測試”, Proceedings of the 24th R. O. C. Polymer Symposium, Jan., (2001)
24.S. Godbole, S. Gote, M. Latkar, T. Chakrabarti, “Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films”, Bioresource Tech., 86, 33 (2003)
25.S. Wang, J. Yu and Yu, “Compatible thermoplastic starch/polyethylene blends by one-step reactive extrusion”, Polym. Int., 54 279 (2005)
26.S. M. Lai, C. K. Huang, H. F. Shen, “Preparation and properties of biodegradable poly(butylene succinate)/starch blends”, J. Appl. Polym. Sci., 97, 257 (2005)
27.黃國昌, “以PA 6,6為基材之奈米複合材料開發與性質探討’’, 長庚大學, 碩士論文, 民國94年。
28.K. Yano, “Synthesis and properties of polyimide-clay hybrid films”, J. Polym. Sci. Polym. Chem. Ed., 35, 2289 (1997)
29.J. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach”, Chem. Mater., 8, 1667 (1996)
30.A. Akelah and A. Moet, “Synthesis of organophilic polymer-clay nanocomposites”, J. Appl. Polym. Sci., 55, 153 (1994)
31.C. Zilg, “Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates”, Adv. Mater., 11, 49 (1999)
32.M. Alexandre, P. Dubois, “Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials”, Mater. Sci. Eng., 28, 1 (2000)
33.Y. Fukushima and S. Inagaki, “Synthesis of an intercalated compound of montmorillonite and 6-polyamide”, J. Incl. Phenom. Macro. Chem., 5, 473 (1987)
34.K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, “Synthesis and properties of polymide-clay hybrid”, J. Polym. Sci., A, Polym. Chem., 31, 2493 (1993)
35.A. Usuki, M. Kawasumi, Y. Kojim, A. Okada, T. Kurauchi, and O.
Kamigaito, “Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam”, J. Mater. Res., 8, 1174 (1993)
36.A. Okada, A. Usuki, T. Kurauchi, and O. Kamigaito, ACS Symposium Series, 55, 585 (1995)
37.P.B. Messersmith and E.P. Giannelis, J. Polym. Sci., A, Polym. Chem., 33, 1047 (1995)
38.Z. Wang and T. J. Pinnavaia, “Hybrid Organic-Inorganic Nanocomposites: Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer”, Chem. Mater., 10, 1820 (1998)
39.R. Krishnamoorti, R. A. Vaia and E. P. Giannelis, “Structure and dynamics of polymer-layered silicate nanocomposites”, Chem. Mater., 8, 1728 (1996)
40.R.A. Vaia, K.D. Jandt, E.J. Kramer and E.P. Giannelis, “Microstructural Evolution of Melt Intercalated Polymer-Organically Modified Layered Silicates Nanocomposites ”, Chem. Mater., 8, 2628 (1996)
41.M. Kato, A. Usuki and A. Okada, “Synthesis of polypropylene oligomer-clay intercalation compounds”, J. Appl. Polym. Sci., 66, 1781 (1997)
42.M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada, “Preparation and mechanical properties of polypropylene-clay hybrids”, Macromol., 30, 6333 (1997)
43.N. Hasegawa, M. Kawasumi, M. Kato and A. Okada, “Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer”, J. Appl. Polym.Sci., 67, 87 (1997)
44.Z. Wang and T. J. Pinnavaia, “Nanolayer reinforcement of elastomeric polyurethane”, Chem. Mater., 10, 3769 (1998)
45.N. Hasegawa, H. Okamoto, M. Kawasumi, and A. Usuki, “Preparation and mechanical properties of polystyrene-clay hybrids”, J. Appl. Polym. Sci., 74, 3359 (1999)
46.Y. Ke, C. Long and Z. Qi, “Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites”, J. Appl. Polym. Sci., 71, 1139 (1999)
47.X. Li, T. Kang, W. J. Cho, J. K. Lee and C. S. Ha, “Preparation and characterization of poly(butyleneterephthalate)/organoclay nanocomposites”, Macromol. Rapid.Commun., 22, 1306 (2001)
48.T. G. Gopakumar, J.A. Lee, M. Kontopoulou and J.S. Parent, “Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites ”, Polymer, 43, 5483 (2002)
49.A. M. Stewart, J. H. Peter, “Preparation and characterisation of biodegradable starch-based nanocomposite materials”, Polym. Int., 52, 1767 (2003)
50.S. B. Kalambur, S. S. Rizvi, “Starch-based nanocomposites by reactive extrusion processing”, Polym.Int., 53, 1413 (2004)
51.A. Pattanayak and S.C. Jana, “Properties of bulk-polymerized thermoplastic polyurethane nanocomposites”, Polymer, 46, 3394 (2005)
52.F. C. Chiu, S. M. Lai, Y. L. Chen, T. H. Lee, “Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener”, Polymer, 46, 11600 (2005)
53.Y. C. Kim, S. J. Lee, “Effect of maleated polyethylene on the rheological properties of LLDPE/Clay nanocomposites ”, Polymer Journal, 37, 206 (2005)
54.M. F. Huang, J. G. Yu, “Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites”, J. Appl. Polym. Sci., 99, 170 (2006)
55.M. Laus, O. Francescangeli, and F. Sandrolini, “New hybrid nanocomposites based on an organophilic clay and poly(styrene-b-butadiene) copolymers”, J. Mater. Res., 12, 3134 (1997)
56.F. C. Chang, S. W. Kuo, W. J. Huang, “Syntheses and characterizations of in situ blended metallocence polyethylene/clay nanocomposites”, Polymer, 44, 7709 (2003)
57.Y. W. Chang, J.Y.Shin and S.H. Ryu, “Preparation and properties of styrene-ethylene/butylene-styrene (SEBS)-clay hybrids”, Polym. Int., 53, 1047 (2004)
58.S. M. Lai, Y. C. Liao, T. W. Chen, “Properties and preparation of compatibilized nylon 6 nanocomposites/ABS blends using functionalized metallocene polyolefin elastomer. I. Impact properties”, J. Appl. Polym. Sci., 100, 1364 (2006)
59.R. S. Brodkey, Fluid Motion and Mixing., New York (1966)
60.Z. Tadmor and C.G. Gogos, Principles of Polymer Processin Wiley, New York (1976)
61.T. D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, “Nylon 6 nanocomposites: The effect of matrix molecular weight”, Polymer, 42, 9929-40 (2001)
62.R. R. N. Sailaja, M. Chanda, “Use of poly(ethylene-co-vinyl alcohol) as compatibilizer in LDPE/thermoplastic tapioca starch blends”, J. Appl. Polym. Sci., 86, 3126 (2002)
63.R. Chandra, R. Rustgi, “Biodegradation of maleated linear low-density polyethylene and starch blends”, Polym. Degrad Stab., 56, 185 (1997)
64.D. Bikiaris, C. Panayiotou, “LDPE/starch blends compatibilized with PE-g-MA copolymers”, J. Appl. Polym. Sci., 70, 1503 (1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top