(3.239.33.139) 您好!臺灣時間:2021/03/08 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖源樟
研究生(外文):Yuan-Chang Liao
論文名稱:甲苯在PU薄膜中吸附、擴散行為與蒸氣滲透之質傳模擬
論文名稱(外文):Sorption, diffusion, and vapor permeation of toluene in polyurethane membranes.
指導教授:呂幸江
指導教授(外文):Shingjiang Jessie Lue
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:聚氨基甲酸酯吸附蒸氣滲透
外文關鍵詞:PolyurethaneSorptionVapor permeation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討甲苯於各種聚氨基甲酸酯(Polyurethane,簡稱PU)薄膜中之吸附、擴散、蒸氣滲透的行為,以及其質傳模擬。另外文中也利用FTIR、DSC、TGA探討PU膜材之特殊官能基及熱性質的分析。在吸附行為方面,吸附量則會隨蒸氣活性上升而增加,並且用Flory-Huggins model與Flory-Rehner model來進行模擬其吸附現象。其中又以Flory-Rehner mode會優於Flory-Huggins model,因此以Flory-Rehner model來描述其甲苯於PU薄膜內之吸附行為較為適當。在擴散特性部份,將不同時間的吸附重量數據以Balik method求得擴散係數,並用Long’s model來模擬不同吸附濃度之擴散係數,而甲苯於PU薄膜之擴散係數皆隨濃度、蒸氣活性增加而增加。最後根據溶解-擴散機制,以Fick’s first law來模擬蒸氣滲透之質傳程序,且流通量(Flux)會隨進料濃度上升而增加。從模擬結果得知以Flory-Rehner model模擬的效果比Flory-Huggins model還理想。綜合上述結論,本研究已建立單成份甲苯在蒸氣滲透PU薄膜內之質傳機制模式。
In this research, the sorption, diffusion, and permeation of toluene through various polyurethane (PU) membranes were determined. In addition, we utilized FTIR, DSC, and TGA to analyze the specific functional groups and thermal properties of PU membranes. The vapor sorption increased with vapor activity. The sorption isotherms were fitted using Flory-Huggins and Flory-Rehner models. The results showed the Flory-Rehner model was superior to Flory-Huggins equation. The diffusion coefficients were determined using gravimetric method and the data were analyzed using Balik equation. The diffusivity at various vapor concentrations was predicted using Long’s model. The diffusion coefficients increased with vapor activity. The flux increased with feed concentration. The vapor permeation flux was modeled using the Fick’s first law. Again, the results showed that the sorption behavior estimated with the Flory-Rehner model had higher accuracy than Flory-Huggins model. In conclusion, we have established transfer model of vapor permeation of toluene in various PU membranes and the predicted values were in excellent agreement with the experimental data.
指導教授推薦書
口試委員會審定書
長庚大學授權書......................................................iii
誌謝................................................................iv
中文摘要.............................................................v
Abstract...........................................................vi
目錄...............................................................vii
圖目錄..............................................................xi
表目錄............................................................xiii
第 一 章、緒 論.......................................................1
1-1 前 言.........................................................1
1-2 背 景.........................................................1
第 二 章、文 獻 回 顧..................................................3
2-1 揮發性有機物(VOCs)的簡介與危害..................................3
2-2 VOCs控制處理技術...............................................7
2-2-1 冷凝法..................................................7
2-2-2 吸附法..................................................7
2-2-3 吸收法..................................................8
2-2-4 焚化法..................................................8
2-2-5 生物處理技術.............................................8
2-3 蒸氣滲透法 (Vapor permeation).................................12
2-3-1 蒸氣滲透質傳機制與模擬...................................14
2-4 薄膜的介紹....................................................17
2-4-1 薄膜分離原理............................................17
2-5 PU (Polyurethane) 膜的介紹...................................18
第 三 章、吸附行為與擴散特性理.........................................23
3-1 吸附基本原理..................................................23
3-1-1 吸附種類...............................................24
3-2 吸附行為.....................................................25
3-2-1 Flory-Huggins sorption................................25
3-2-2 BET sorption..........................................26
3-2-3 Langmuir sorption.....................................26
3-2-4 Henry’s law sorption.................................26
3-2-5 Dual mode sorption....................................27
3-3 擴散特性.....................................................30
3-3-1 擴散係數計算............................................30
第 四 章、實驗材料與方法..............................................34
4-1 實驗材料與設備................................................35
4-2 PU薄膜之製備與測量............................................37
4-2-1 薄膜之製備.............................................37
4-2-1 薄膜厚度之量測..........................................37
4-3 物性測試分析..................................................37
4-3-1 傅立葉紅外線光譜儀.......................................37
4-3-2 熱重分析儀..............................................38
4-3-3 熱差掃描熱分析儀........................................38
4-4 VOC氣體吸附實驗...............................................38
4-4-1 單成份(1 solvent+1 polymer)吸附與擴散實驗................38
4-4-2 吸附裝置內之VOC活性變化的量測.............................39
4-5 蒸氣滲透(VP)實驗..............................................39
4-6 GC分析與檢量線之製作...........................................40
4-7 實驗流程示意圖................................................40
第 五 章、結果與討論..................................................45
5-1 PU的合成鑑定(FTIR) ...........................................45
5-2 PU的熱性質分析................................................45
5-2-1 熱失重分析(TGA).........................................45
5-2-2 DSC圖譜................................................46
5-3 Vapor 吸附行為...............................................51
5-3-1 單成份(1 solvent+1 polymer)吸附行為.....................51
5-3-2 單成份(1 solvent+1 polymer)吸附模擬.....................56
5-4 擴散行為 ....................................................61
5-4-1 單成份(1 solvent+1 polymer)擴散行為.....................61
5-5 蒸氣滲透(VP)實驗模擬..........................................66
5-5-1 VP(1 solvent + polymer)單成份系統......................66
第 六 章、結論.......................................................71
參 考 文 獻..........................................................72
行政院環保署全球資訊網 , http:/www.epa.gov.tw/.

劉文華,1999,“揮發性有機物廢棄之處理技術與應用實務”,化工 技術第七卷第六期.

環保產業雙月刊第21期揮發性有機物廢棄之處理技術簡介,
http://www.environet.org.tw/publication/monthly21_m2.htm.

王立鼎,以蒸氣滲透方式去除及回收揮發油氣之研究,長庚大學化材所,桃園,台灣 (2003).

蔡文田,“含揮發性有機物廢棄之吸附處理技術”,化工技術,第六月號,p117~130 (1995).

張峋杰,“活性吸附法”,化工技術,第八月號,p169~180 (1997).

周明顯,逸散性臭味處理技術之評估及管理措施之研擬,行政院環保署,EPA-86-FA41-09-13, (1997).

Foster, K, L, Fuerman, R. G.., Economy, J., Larson, S. M. and Rood, M. J., “Adsorption characteristics of trace volatile organic-compounds in gas streams onto activated carbon-fibers,” Chem. Material, Vol. 4 (1992) 1068-1073.

Saxer, R., “Technology and applications of activated carbon adsorption for voc control and solvent recovery,” Abs. Am. Chem. Soc., Vol. 210 (1995) 6-SCHB.

Poddar, T. K. and Sirkar, K. K., “A hybrid vapor permeation and membrane based absorption stripping for voc removal and recovery from gaseous emissions," J. Membr. Sci., Vol. 132 (1997) 229-233.

Scott, J. A., Daugulis, A. J., Trotin, M., Acosta, F., Shepherd, S. H. and Almahmoud, A., “Recovery of volatile organic compounds condensed out of waste gas stream by selected high boiling point extractants,” J. Chem. Tech. Biotechnol., Vol. 67 (1996) 397-403.

Barresi, A. A. and Baldi, G., “Deep catalytic-oxidation of aromatic hydrocarbon mixtures-reciprocal inhibition effects and kinetics,” Indust. Eng. Chem. Res., Vol. 33 (1994) 2964-2974.

H. Strathmann, C.M. Bell, and K. Kimmerle, “Development of Synthetic Membrane for Gas and Vapor Separation,” Pure Appl. Cgem., 58 (1968) 1663-1670.

H. Parl, C. Philipsen, F.J. Gerner, and H. Strathmann, Removal of Organic Vapors from Air by Selective Membrane Permeation, J. Membr. Sic, 36 (1988) 363-370.

R.W. Baker, N. Yoshioka, J.M. Mohr, and A.J. Khan, Separation of organic Vapors from Air, J. Membr. Sci, 31 (1987) 259-266.

J.G. Wijmans, and V.D. Helm, A Membrane System for the Separation and Recovery of Organic Vapors from Gas Streams, AICHE Symp. Ser., 85 (1989) 74-83.

I. Pinnau, J.G. Wijmans, I. Blume, T. Kuroda, and K.V. Peinemann, J. Membr. Sci, 37 (1988) 81-91.

F.W. Billmeyer, Jr. Textbook of polymer Science, 3rd ed, Wiley: New York, NY, (1984) 520-537.

X. Feng, S. Sourirajan, H. Tezel, and T. Matsuura, Separation of Organic Vapor from Air by Aromatic Polyimide Membrane, J. Appl. Polym. Sci., 43 (1991) 477-493.

D.P. Sperry, J.L. Falconer, and Noble-RD, Methanol Hydrogen Separation by Capillary Condensation in Inorganic Membranes, J. Membr. Sci., 60 (1991) 185-192.

P. Huang, N.P., Xu, J. Shi, and Y.S. Lin, Recovery of Volatile Organic Solvent compounds from Air by Ceramic Membranes, Ind. Eng. Chem. Res., 36 (1997) 3825-3833.

J.S. Cha, V. Malik, D. Bhaumik, R. Li, and K.K. Sirkar, Removal of Vocs from Waste Gas Streams by Permeation in a Hollow Fiber Permeator, J. Membr. Sci., 128 (1997) 195-211.

T.K. Poddar, S. Majumdar, and K. K. Sirkar, Removal of Vocs from Air by Membrane based Absorption and Stripping, J. Membr. Sci., 120 (1996) 221-237.

P.A. Kober, Pervaporation, Perstillation and Percrystalliztion, J. Am. Chem. Soc., 39 (1971) 944.

R.B. Long, Liquid permeation through plastic films, Ind. Eng. Chem.
Fundam. 4 (1965) 445-451.

張肇輝,分離技術與分離之應用,製酒科技專論彙編,19 (1997) 215-227.

郭文正,曾添文,薄膜分離 (1998).

V.S. Chnha, R. Nobrega, A.C. Habert “Separation of Aqueous Phenol through Polyurethane Membrane By pervaporation. II. Influence of Diisocyanate and Diol Compounds and Crosslinker,” J. Appl. Polym. Sci., 71 (1998) 439-448.

J. Muszynski, G.A. Wolinska, P. Penczek, Synthesis, Characterization, and pervaporation properties of segmented Poly(urethane-urea)s, J. Appl. Polym. Sci., 71 (1999) 1615-1625.

M.A. Ahsan, S.C. Varma, M.H. George, J.A. Barrie, Separation of Ethanol Mixtures by Pervaporation Using Polyurethane Cationomers, Polym. Communicatiobs 32 (1991) 509-512.

S.L. Huang, M.S. Chao, J.Y. Lai, Diffusion of Ethanol and Water Through PU Membranes, Europ. Polym. J. 34 (1998) 449-454.

K.R. Lee, M.Y. Teng, J.Y. Lai, A Study on Pervaporation of aqueous-Ethanol Solution by Modified Polyurethane Membrane, J. Membr. Sci., 162 (1999) 173-180.

K. Katsuki, Y. Seiki, M. Shigeharu, Separation of benzene/cyclohexane mixtures using polyurethane-silica hybrid membrane, J. Membr. Sci., 149 (1998) 29-37.

V.S. Chuha, R. Nobrega, A.C. Habert, Fraction of Benzene/N-hexane Mixtures by Pervaporation Using Polyurethane Membranes, Braz. J. of Chem. Eng. 16 (1999) 297-308.

H.Y. Wang, T. Ugomori, K. Tanaka, H. Kita, K.I. Okamoto, Y. Suma, Sorption and Pervaporation properties of Cross-Linked Membranes of Poly(Ethylene Oxide Imide) Segmented Copolymer to Aromatic/
Nonaromatic Hydrocarbon Mixtures, J. Polym. Sci. Part B-Polym. 38 (2000) 1800-1811.

L. Enneking, W. Stephan, A. Heintz, Sorption and Diffusivity Measurements of Cyclohexane Plus Benzene and Cyclohexane Plus Toluene Mixtures in Polyurethane Membranes-Model-Caculations of the pervaporation Process, Berichte der Bunsen Gesellschaft Fur Phy. Chem. 97 (1993) 912-922.

P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, (1953) 511-578.

E. Favre, P. Schaetzel, Q.T. Nguygen, R. Clement, and J. Neel, Sorption, Diffusion, and Vapor Permeation of Various Penetrants through Dense Poly(dimethylsiloxane) Membranes : A Transport Analysis, J. Membr. Sci., 92 (1994) 169-184.

M.L. Pinto, J. Pires, A.P. Carvalho, M.B.d. Carvalho, and J.C. Bordado, Sorption Isotherms of Organic Vapors on Polyurethane Foams, J. Phys. Chem. B (2004) 108 13813-13820.

N. Lu¨tzow, A. Tihminlioglu, R.P. Danner, J.L. Duda, A.D. Haan,
G. Warnier, J.M. Zielinski, Diffusion of toluene and n-heptane in polyethylenes of different crystallinity, Polym. 40 (1999) 2797–2803.

F. Tihminlioglu, R.P. Danner, N. Lu¨tzow, J.L. Duda, Solvent Diffusion in Amorphous Polymers: Polyvinyl Acetate–Toluene System,
J. Polym. Sci.: Part B: Polym. Phys. Vol. 38 (2000) 2429–2435.

T.Z. Moattor, R. Sadeghi, A modified nonrandom factor model for the calculation of solvent activities in polymer solution, Fluid Phase Equilibr. 202 (2002) 413-422.

Y.M. Sun, H.L. Lee, Sorption/desorption properties of water vapor in poly(20hydroxyethylmethacrylate):1.Expermental preliminary analysis, Polym. 37 (1996) 3915-3919.

E. Favre, P. Schaetzel, Q.T. Nguygen, R. Clement, J. Neel, Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis, J. Memb. Sci. 92 (1994) 169-184.

K. Tsutsui, T. Katsumata, Y. Yamamoto, H. Fukatsu, H. Yoshimizu, T. Kinoshita, Y. Tsujita, The structural organization in syndiotactic polystyrene film induced by toluene vapour sorption, Polym. 40 (1999) 3815–3819.

J.C. Bravo, R.A. Siegel, Water vapor sorption behavior of copolymer of N,N-diethylaminoethyl methacrylate and methyl methacrylate, Bio. 17 (1996) 1187-1193.

Y. Cen, C.S. Bickel, R.N. Lichtenthaler, Sorption properties of organic solvents in PEBA membranes, J. Membr. Sci. 206 (2002) 341–349.

T.m. Feng, W.J. MacKnight and N.S. Schneidert, The diffusion of dichloroethane in phase-segregated polyurethanes. Polym, 32 (1991) 8 1493-1503.

C.M. Balik, On the extraction of diffusion coefficients from gravimetric data for sorption of small molecules by polymer thin films,
Macromol. 29 (1996) 3025-3030.

M. Fels, and R. Huang, Theoretical Interpretation of the Effect of Mixture Composition on Separation of Liquids in Polymers, J. Macromol. Sci. Phys. B5 (1971) 89-86.

L. Ennecking, A. Heintz, R.N. Lichtenthaler, Sorption and diffusivity measurements of cyclohexane + benzene and cyclohexane + toluene mixtures in polyurethane membranes. Model calculations of pervaporation process, Ber Bunsenges Phys. Chem. 96 (1993) 912-922.

關旭強、劉坤興、馬振基、金惟國、史宗准,[Waterborne Polyurethane/Silica奈米複合材料之開發及其特性之研究],中山科學研究院化學所 (2004)。

A. Aneja, G.L. Wilkes, E.G. Rightor, Study of Slabstock Flexible Polyurethane Foams Based on Varied Toluene Diisocyanate Isomer Ratios, J. Polym. Sci.: Part B: Polym. Phys. 41 (2003) 258–268.

Y. Yang, Y. Huang, D. Wang, H. Liu, C. Hu, Sorption and diffusion of ethanol vapor in polybutadiene/acrylonitrile, polybutadiene/styrene and polybutadiene based polyurethanes., Europe.. Polym. J. 40 (2004) 855–863.

R. Ponangi, P.N. Pintauro, Measurement and interpretation of equilibrium organic vapor sorption in polyurethane membranes, J. Membr. Sci. 144 (1998) 25-35.

M.L. Pinto, J. Pires, A.P. Carvalho, M.B. de Carvalho, J.C. Bordado, Characterization of adsorbent materials supported on polyurethane foams by nitrogen and toluene adsorption, Microporous and Mesoporous Materials 80 (2005) 253-262.

R. Ponangi, P.N. Pintauro, Measurement and interpretation of equilibrium organic vapor sorption in polyurethane membranes. J. Membr. Sci. 144 (1998) 25-35.

R. Ponangi, P.N. Pintauro, D.D. Kee, Free volume analysis of organic vapor diffusion in polyurethane membranes. J. Membr. Sci. 178 (2000) 151–164.

廖財興,添加沸石在聚氨基甲酸酯薄膜對滲透蒸發性質的探討,長庚大學,桃園,台灣,(2004)。

蘇一銘,利用聚氨基甲酸酯-沸石薄膜來分離乙苯/苯乙烯,長庚大學,桃園,台灣,(2004)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔