跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張哲源
研究生(外文):Chang, Ghe Yuan
論文名稱:建立一個以轉殖水稻細胞來生產有用外源蛋白之最佳化系統
論文名稱(外文):Optimization of Transgenic Plant Cell culture system for production of Heterologous Proteins
指導教授:劉裕國
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:轉殖水稻細胞懸浮培養人類血清蛋白
相關次數:
  • 被引用被引用:1
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
相較微生物系統以及哺乳類動物系統而言,以植株系統來生產外源蛋白有著更經濟,更安全等優勢。因此,植株生產系統目前已逐漸受到世人的注目。然而,由於植株生產系統無法精確地控制成長,以及缺乏工業放大之可行性。植物細胞系統可擁有植株系統之優點,且又可避免掉上述之缺點,故本研究遂採用植物細胞生產系統來取代植株系統。
在本研究中,吾人運用受到缺糖所誘導之水稻αAmy3啟動子來生產人類血清蛋白(此血清廣泛地使用於世上),並藉由signal peptide來將人類血清蛋白外泌至培養基中。以錐形瓶來進行培養,相較於MS培養基,使用N6培養基可將產量由22 mg / L 提升至50 mg / L。
此外,吾人證實藉著添加Proline於N6培養基可提升產量至60 mg / L。其提升的原因可能是Proline在缺糖時期,維持細胞滲透壓,抵擋水合作用所產生的胞裂現象亦或是Proline被視為氮源來使用。另外,在重複生產的過程中,其產量可達至49 mg / L。然而,在氣舉式反應器的放大製程中,於缺糖生產五天後其產量只有18 mg / L。
雖然最終產量未能符合預期,但是相信藉著培養政策之最適化以及培養基之修正,未來水稻懸浮細胞生產體系必能成為生產醫藥用外源蛋白之最有潛力的系統。
Abstract
The utility of whole plants for the recombinant protein production has received a great deal of attention recently because of its advantage in economy and safety compared to traditional microbial and mammalian production systems. However, there is still some deficiency in whole plant production, including the unstable growth conditions control and the poor ability to scale up. The Plant cell culture system can combine the advantages of whole plants and avoid above disadvantages.
In the study, we showed the expression of human serum albumin(HSA)by sucrose starvation-inducible rice αAmy3 promoter and secretion to medium by using signal peptide. In the flask scale culture, N6 medium could increase HSA productivity from 22 mg / L to 50 mg / L compared to MS medium. Furthermore, we demonstrated that adding proline level in N6 medium could enhance HSA production to 60 mg / L. Possible functional roles of Proline may include: cytoplasmic osmoticum, the hydration of polymers and serving as a nitrogen source compound during period of sugar starvation. Additionally, in repeated sucrose provision-depletion cycles, the N6 medium also showed the amount of HSA accumulated reached up 49 mg / L. However, in the airlift bioreactor scale up process, the HSA production only reached 18 mg / L five days after sucrose deletion.
Although a final yield of HSA cannot achieve the expectation, the rice suspension cell culture showed high potential to become the most important system for the production of recombinant pharmaceutical protein by optimum cultivation strategies and modified medium.
總目錄
指導教授推薦書………………………………………………………
口試委員審定書………………………………………………………
長庚大學授權書………………………………………………………iii
致謝……………………………………………………………………iv
中文摘要………………………………………………………………v
英文摘要………………………………………………………………vi
總目錄…………………………………………………………………vii
圖目錄…………………………………………………………………xi
表目錄…………………………………………………………………xiii
第一章 緒論……………………………………………………………1
1.1 前言……………………………………………………………1
1.2 研究動機與目的………………………………………………2
第二章 文獻回顧………………………………………………………4
2.1 利用基因改良的生物細胞生產外源蛋白質…………………4
2.1.1 微生物生產系統…………………………………………5
2.1.2 動物生產系統……………………………………………6
2.1.3 植物生產系統……………………………………………7
2.2 基因轉殖水稻細胞生產外源蛋白質…………………………10
2.2.1 基因轉殖水稻細胞………………………………………10
2.2.2 利用水稻α-澱粉水解酵素啟動子(α-amylase 3 promoter)
表現外源蛋白………………………………………………10
2.3 人類血清蛋白(human serum albumin,HSA)…………12
2.4 植物細胞培養政策……………………………………………15
2.4.1 植物培養細胞的生理特性…………………………………15
2.4.2 懸浮培養法………………………………………………15
2.4.3 固定化培養法……………………………………………17
2.4.4 缺糖處理…………………………………………………20
2.4.5培養環境之培養基探討……………………………………21
2.4.5.1 N6培養基之內含物Proline……………………………21
2.4.6 植物細胞培養之操作模式…………………………………22
2.4.7 懸浮培養之生化反應器……………………………………24
2.4.8 固定化培養之生化反應器…………………………………29
2.5 實驗架構…………………………………………………………31
第三章 研究材料與方法…………………………………………………33
3.1 實驗設備…………………………………………………………33
3.2 實驗藥品…………………………………………………………34
3.3 實驗方法…………………………………………………………37
3.3.1 水稻癒傷組織的誘導與建立………………………………37
3.3.2 懸浮細胞培養………………………………………………38
3.3.2.1 懸浮細胞培養系統的建立與繼代……………………38
3.3.2.2 以自然缺糖法來生產人類血清蛋白…………………40
3.3.2.3 最適培養基的篩選……………………………………41
3.3.2.4 最佳培養方式的確立…………………………………41
3.4 分析方法…………………………………………………………41
3.4.1 細胞濕重與乾重測定………………………………………41
3.4.2 細胞活性測試(TTC assay)……………………………41
3.4.3 醣類測定(酚-硫酸法)……………………………………43
3.4.4產物HSA分析…………………………………………………43
3.4.4.1電泳分析及染色………………………………………43
3.4.4.2西方轉漬法(Western blot analysis)………45
3.4.4.3 酵素聯結免疫分析(enzyme linked immunosorbent
assay,ELISA)………………………………………46
第四章 結果與討論……………………………………………………48
4.1 懸浮細胞培養生產人類血清蛋白……………………………48
4.1.1 以自然缺糖法來達到缺糖環境……………………………48
4.1.2最適培養基的篩選…………………………………………49
4.1.3 調整培養基之內部成分……………………………………53
4.1.4 以人工缺糖法來確定Proline之功用……………………55
4.1.5 調整N6培養基內含Proline之比例………………………61
4.1.6 以N6培養基搭配上自然缺糖法來進行批次培養、半連續式
培養……………………………………………………………63
4.1.6.1 批次培養………………………………………………………63
4.1.6.2重複培養………………………………………………………65
4.1.7利用1L內循環式氣舉反應器來進行懸浮細胞之自然缺糖培
養生產…………………………………………………………68
4.1.8利用5L內循環式氣舉反應器來進行懸浮細胞之自然缺糖培
養生產…………………………………………………………72
第五章 結論……………………………………………………………77
參考文獻…………………………………………………………………78
參考文獻
1.趙雲鵬,2003,生化科技與化工專輯,化工技術,第122期,pp.171-172。
2.Spooner, A.., S. Murray, G. Rowlinson-Busza , M. Deonarain , A. Chu , and A. Epenetos A.,〝Genetically engineered antibodies for diagnostic pathology,〞Human Pathol. 25,606-615(1994)
3.Goddijn O. J. M. , and J. Pen,〝Plants as bioreactors ,〞Trends Biotechnol. 13, 379-386 (1995)
4.Dorai H. , J. E. McCartney, R. M. Hudziak , M. S. Tai, A. A. Laminet, L. L. Houston, J. S. Houston , and H. Oppermann,〝Mammalian cell expression of single-chain antibody proteins and their C-terminal fusions with interleukin-2 and other effecter domain,〞Bio/technology. 12,890-897(1994)
5.朱兆文,1998,生技藥品專題研究,財團法人生物技術開發中心,pp.23- 36。
6.朱兆文,2001,蛋白質藥物發展現況與趨勢,財團法人生物技術開發中心,pp.1- 46。
7.Gomord, V. and L. Faye, 〝Posttranslational modification of therapeutic proteins in plants,〞Current Opinion in Plant Biology. 7, 171-181(2004)
8.Wurm, F. M., 〝Production of recombinant protein therapeutics in cultivated mammalian cells,〞Nature Biotechnol. 22, 1393-1398 (2004)
9.劉繼賢,動物細胞培養與基因重組蛋白質生產之研究,國立清華大學化學工程研究所博士論文,2001年5月。
10.Mason, H. S., and C. J. Artzen,〝Transgenic plants as vaccine production systems,〞Trends Biotechnol. 13, 388-392(1995)
11.Moffat, A. S.,〝Exploring transgenic plants as a new vaccine source,〞Science. 268, 658-660(1995)
12.Miele, A. S.,〝Plant as bioreactors for biopharmaceuticals:regulatory considerations,〞Trends Biotechnol. 15, 45-50(1997)
13.Herbers, K., and U. Sonnewald,〝Produciton of new/modified proteins in transgenic plants,〞Current Opinion in Biotechnology. 10,163-168(1999)
14.Smith, M. D., 〝Antibody Production in Plants,〞Biotechnology Advances. 14, 267-281(1996)
15.Schillberg, S., R. Fischer, and N. Emans,〝Molecular farming of antibodies in plants,〞Naturwissenschaften. 90, 145-155(2003)
16.Fischer, R., E. Stoger, S. Schillberg, P. Christou, and R. M. Twyman,〝Plant-based production of biopharmaceuticals,〞Current Opinion in Plant Biology. 7, 152-158(2004)
17.Shin, Y. S., S. Y. Hong, T. H. Kwon, Y. S. Jang, M. S. Yang, 〝High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture,〞 Biotechnol. Bioeng. 82, 778-783(2003)
18.Stoger, E., C. Vaquero, E. Torres, M. Sack, L. Nicholson, J. Drossard, S. Williams, D. Keen, Y. Perrin, P. Christou, and R. Fischer,〝Cereal crops as viable production and storage systems for pharmaceutical scFv antibody,〞Plant Molecular Biology. 42,583-590(2000)
19.Can, M. T., H. H. Chang, S. L. Ho, W. F. Tong, and S. M. Yu,〝Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter / β-glucuronidase gene,〞Plant Molecular Biology. 22,491-506(1993)
20.Jacobsen, J. V., A. D. Hanson, P. C. Chandler, 〝Control of transcription of a-amylase and rRNA genes in barley aleurone protplasts by GA and ABA,〞Nature. 316,275-277(1985)
21.Yu, S. M., Y. J. Lee, S. C. Fang, M. T. Chang, S. F. Hwa, and L. F. Liu , 〝Sugar act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grain,〞Plant Mol. Biol. 30, 1277-1289 (1996)
22.陸重安,水稻α-澱粉水解酵素基因表現受糖調控分子機制之研究,國防醫學院生命科學研究所博士論文,1998年7月。
23.Terashima, M., Y. Murai, M. Kawamura, S. Nakanishi, T. Stoltz, L. Chen, W. Drohan, R. L. Rodriguez, and S. Katoh, 〝Production of functional human α1-antitrypsin by plant cell culture,〞Appl. Microbiol. Biotechnol. 52, 516-523(1999)
24.Texler, M. M., K. A. Mcdonald, and A. P. Jackman,〝Bioreactor production of human α1-antitrypsin using metabolically regulated plant cell cultures,〞Biotechnol. Prog. 18, 501-508(2002)
25.Rothschild, M. A., M. Oratz, and S. S. Schreiber,〝Serum albumin,〞Hepatology. 8, 385-401(1988)
26.Moshage, H. J., J. A. M. Janssen, J. H. Franssen, J. C. Hafkenscheid, and S. H. Yap, 〝Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation,〞J. Clin. Invest. 79, 1635-1641.(1987)
27.Kang, H. A., E. S. Choi, W. K. Hong, J. Y. Kim, S. M. Ko, J. H. Sohn, and S. K. Rhee, 〝Proteolytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae,〞Appl. Microbiol. Biotechnol. 53, 575-582(2000)
28.潘素美,2003,生物技術製藥,合記圖書出版社,初版,pp.217- 226。
29.Liu, Y. K., M. Seki, H. Tanaka, and S. Furusaki,〝Characteristics of loofa (Luffa cyclindrica) sponge as a carrier for plant cell immobilization,〞 Fermentation and Bioengineering. 85, 416-421 (1998)
30.劉英俊,汪金追,劉裕國,1998,圖解生物科技基礎實驗法,中央圖書出版社,初版,pp. 79-84。
31.陳國誠,2000,生物固定化技術與產業應用,茂昌出版社,初版,pp.33-45。
32.Liu, C., K. Moon, H. Honda, and T. Kobayashi, 〝Immobilization of rice (Oryza sativa L.) callus in polyurethane foam using a turbine blade reactor,〞Biochemical Engineering Journal. 4, 167-175(2000)
33.Gillet, F., C. Roisin, M. A. Fliniaux, A. J. Dubreuil, J. N. Barbotin, J. E. Nava–Saucedo,〝Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin,〞Enzyme and Microbial Technology. 26, 229–234(2000)
34.游彥端,利用基因改良的水稻癒傷組織來大規模地生產有用外源蛋白,長庚大學化工與材料工程研究所碩士論文,2004年1月。
35.Antonio, C., J. V. Pascale, Z. Xiaoyi, C. B. Brian, and J. S. Michael, 〝Mitotic viability and metabolic competence in UV-irradiated yeast cells,〞Mutation Research. 459, 55-64(2000)
36.盧勁汎,利用轉殖水稻細胞生產重組蛋白質之培養政策探討,長庚大學化工與材料工程研究所碩士論文,2005年
37.Lin, C. C., C. H. Kao, 〝Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl,〞Plant Science. 114, 121-128(1996)
38.Lin, C. C., C. H. Kao, 〝Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings,〞Journal of Plant Physiology. 158, 667-671(2001)
39.Hervieu, F., F. Le Dily, C. Huault and J.-P. Billard〝Contribution of omithine aminotransferase to proline accumulation in NaCl-treated radish cotyledons,〞Plant Cell Environ. 18, 205-210(1995)
40.Jones, M. E., 〝Conversion of glutamate to ornithine and proline: pyrroline-5carboxylate, a possible modulator of arginine requirements〞J. Nutr. 115,509-515(1985)
41.Jung, J. M., N. Seiler〝Enzyme-activated irreversible inhibitors of L-omithine: 2-oxoacid aminotransferase〞J. Biol. Chem. 253,7431-7439(1978)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top