跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧育庭
研究生(外文):Yu-Ting Deng
論文名稱:以超臨界二氧化碳反溶劑法製備PMMA微粒
論文名稱(外文):Precipitation of PMMA Microparticles by Using Supercritical Carbon Dioxide Anti-solvent Method
指導教授:許瑞祺許瑞祺引用關係
指導教授(外文):Ruey-Chi Hsu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:81
中文關鍵詞:超臨界反溶劑法二氧化碳
外文關鍵詞:Supercritical Anti-solvent (SAS)carbon dioxidePMMA
相關次數:
  • 被引用被引用:3
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在光電產業的帶動下,塑膠材料的光學特性愈發重要,尤其以PMMA其優異的光學特性,以PMMA為原料之產品日漸增加,其用途亦愈來愈廣泛。而平面顯示器產業規模日漸擴增,其中擴散片為重要零組件之一。擴散片之功能為提供液晶顯示器一個均勻的面光源,
一般傳統的擴散膜主要是在擴散膜基材中,加入一顆顆的化學顆粒,作為散射粒子,目前使用的散射粒子以PMMA為主。然而一般微粒製備方法會造成粒徑分布寬廣、有機溶劑殘留以及消耗過多能源等問題,利用超臨界反溶劑法可解決上述之問題,其優點為過程快速、溶劑容易回收、粒子均勻易控制大小。
本研究主旨在於利用超臨界反溶劑法製備LCD顯示器擴散片用PMMA微粒,並對各個操作變因對實驗結果的影響加以探討,包括溶液的濃度、在晶析槽內的操作溫度和操作壓力,以及建壓時間等操作變因。
由實驗結果得知,在本研究的實驗範圍內以壓力2000psi、溫度323K、濃度0.1wt%、快速建壓,可得到粒徑為1-23μm之 PMMA 微粒。
Promote Taiwan's color imaging industry to become the world's largest supplier of TFT displays that is an important issue in economical development. Liquid Crystal Displayer(LCD) is one important item in this industries. Diffuser is one of important component in LCD. In general, the Diffuser is made by one thin film and coating one layer of Polymethyl Methacrylate(PMMA) particle on two sides to let light scattering uniform. The price of PMMA particle for diffuser is higher tenfold than that of PMMA for usual use. The PMMA particle for LCD diffuser is specified on 5-30μm. In this study, we investegate the use of supercritical CO2 as anti-solvent in PMMA/THF(tetrahydrofuran) solution system to manufacture PMMA particle. In order to determine the pressure-volume expansion-temperature behavior of the tetrahydrofuran/supercritical CO2, the modified Peng-Robison equation of state was used. A novel experimental apparatus, which is involving, view window and stirrer has been used to carry out the study. The PMMA powder can be obtained by controlling the operation factors such as pressure, temperature, concentration, pressurized rate, pressure release rate, etc.
Learnt by the experimental result, we can obtain the PMMA microparticles with diameter 1-23μm by Supercritical Anti-solvent Method under 2000psi, 323K, 0.1wt%, and shorter time for evaluated pressure will help to produce the small particle.
指導教授推薦書 i
口試委員會審定書 ii
授權書 iii
致謝 iv
中文摘要 v
英文摘要 vi
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
第二章 文獻回顧 3
2-1聚甲基丙烯酸甲酯(Polymethyl Methacrylate, PMMA) 3
2-1.1 PMMA簡介 3
2-1.2 PMMA特性 4
2-1.3 PMMA的光電用途 6
2-2 超臨界流體 8
2-3 超臨界流體製造微粒之方法 13
2-3.1 超臨界反溶劑法 13
2-3.2 溶劑體積膨脹度與粒子過飽和析出之關係 17
2-3.3 建壓時間對粒徑大小之關係 18
2-3.4 溫度與壓力對粒徑大小之關係 20
2-3.5 溶液濃度對粒徑大小之關係 21
2-3.6 反溶劑流速對粒徑大小之關係 21
第三章 實驗方法 22
3-1 實驗藥品 22
3-2 實驗裝置 24
3-3 實驗儀器 25
3-4實驗步驟 27
3-5 粉體的表面形態觀察及性質之量測 28
3-5.1 粉體的表面型態分析(SEM) 28
3-5.2 溶劑殘留分析(TGA) 28
3-5.3 粉體之熱性質測定(DSC) 28
3-5.4 粉體之結晶性測定(XRD) 28
3-5.5 粉體之粒徑大小測量 29
第四章 結果與討論 30
4-1 二氧化碳之密度、溶解度參數與壓力之關係 31
4-2 溶劑體積膨脹度計算 33
4-3 溶液濃度對產物型態的影響 40
4-4 操作壓力對產物型態的影響 43
4-5 操作溫度對產物型態的影響 46
4-6 建壓時間對產物型態的影響 48
4-7 攪拌對產物型態的影響 51
4-8 粒徑分析 53
4-9 TGA溶劑殘留檢測 55
4-10 DSC、XRD結晶性檢測 57
4-11 以不同溶劑製備PMMA微粒之結果 59
第五章 結論 62
參考文獻 63
Bakhbakhi, Y., P. A. Charpentier, S. Rohani, “Experimental study of the GAS process for producing microparticles of beclomethasone-17, 21-dipropionate suitable for pulmonary delivery”, International Journal of Pharmaceutics, 309, 71 (2006)

Beckman, W., H. Weber, B. Bungert, W. Arlt, “Herstellung eines feinstkristallinen wirkstoffs durch kristallisation mit verdichteten gasen”, Chem. Ing. Technol., 69, 349 (1997)

Burke, J., “Solubility Parameters : Theory and Application”, AIC Book and Paper Group Annual, 3, 13 (1984)

Chen, K., X. Zhang, J. Pan, W. Yin, “Recrystallization of andrographolide using the supercritical fluid antisolvent process”, Journal of Crystal Growth, 274, 226 (2005)

Cocero, M. J., S. Ferrero, “Crystallization of β-Carotene by a GAS process in batch effect of operating conditions”, Journal of Supercritical Fluids, 22, 237 (2002)

Dixon, D. J., K. P. Johnston, R. A. Bodmeier, “Polymeric materials formed by precipitation with a compressed fluid antisolvent”, AIChE Journal, 39(1), 127 (1993)

Dixon, D. J., K. P. Johnston, “Formation of microporous polymer fibers and oriented fibrils by precipitation with a compressed fluid antisolvent”, Journal of Applied Polymer Science, 50, 1929 (1993)

Fuente Badilla, J. C. de la, C. J. Peters, J. de Swaan Arons, “Volume expansion in relation to the gas-antisolvent process”, Journal of Supercritical Fluids, 17, 13 (2000)
Hanna, M. H., P. York, B. Yu. Shekunov, “Control of the polymorphic forms of a drug substance by solution enhanced dispersion by supercritical fluids, in: M. Perrut, P. Subra (Eds.)”, Proceedings of the 5th Meeting on Supercritical Fluids, INPL, Vandeuvre (Fr), 1, 325 (1998)

Im, J., W. Bae, J. Lee, H. Kim, “Vapor-Liquid Equilibria of the Binary Carbon Dioxide-Tetrahydrofuran Mixture System”, Journal of Chemical & Engineering Data, 49, 35 (2004)

Jung, J., M. Perrut, “Particle design using supercritical fluids: Literature and patent survey”, Journal of Supercritical Fluids, 20, 179 (2001)

Lee, M. L., K. E. Markides, “Chromatography with supercritical fluids”, Science 235(4794), 1342 (1987)

Liu, J., T. Liu, S. Kumar, “Effect of Solvent Solubility Parameters on SWNT Dispersion in PMMA”, Polymer, 46, 3419 (2005)

McHughet, M. A., T. L. Guckes, “Separation polymer solutions with supercritical fluids”, Macromolecules, 18, 674 (1985)

Mukhopadhyay, Mamata, “Partial molar volume reduction of solvent for solute crystallization using carbon dioxide as antisolvent”, Journal of Supercritical Fluids, 25, 213 (2003)

Ng, H. J., D. B. Robinson, “Equilibrium Phase Properties of the Toluene-Carbon Dioxide System”, Journal of chemical and Engineering Data, 23, 4 (1978)

Paula, M. G., V. Krukonis, G. D. Botsaris, “Gas anti-solvent(GAS) recrystallization: Application to particle design”, AIChE Journal, 87, 284 (1990)

Pratibhash, C., Ram B. Gupta, “Supercritical CO2 based production of fullerene nanoparticles”, Proceedings of the 5th Conference on Supercritical Fluid and Their Applications (1998)

Rantakyla, M., M. Jantti, O. A. MarkkuHurme, “The Effect of Initial Drop Size on Particle Size in The Supercritical Antisolvent Precipitation technique” Journal of Supercritical Fluids, 24, 251 (2002)

Reverchon, E., A. A. Barba, G. Della Porta, D. Sannino, P. Ciambelli, “Production of catalyst precursors by supercritical antisolvent precipitation, in: E. Reverchon(Ed.)”, Proceeding of the 4th Italian Conference on Supercritical Fluids and Their Applications, CVES, Salerno(I), 385 (1997)

Reverchon, E., G. Della Porta, C. Celano, A. Di Trolio, S. Pace, “Processo di formazione di microparticelle di composti precursori di superconduttori per precipitazione indotta da fluidi supercritici”, Italian Patent SA97A/10 (1997)

Reverchon, E., G. Della Porta, D. Sannino, L. Lisi, P.Ciambelli, “Supercritical antisolvent precipitation: a novel technique to procedure catalyst precursors. Preparation and characterization of samarium oxide nanoparticles, in: B. Delmon, P. A. Jacobs, R. Maggi, J. A. Martens, P. Grange, G. Poncelet (Eds.)”, Proceedings 7th International Symposium On Scientific Bases for the Preparation of Heterogeneous Catalysts, Elsevier, 349 (1998)

Reverchon, E., G. Della Porta, “Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation”, Powder Technology, 106, 23 (1999)

Reverchon, E., G. Della Porta, I. De Rosa, P. Subra, D. Letourneur, “Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation”, Powder Technology, 106, 23 (1999)

Richard, “CO2 as A Cosolvent : Applicatiob to Fats, Oils and Other Materials”, Chemistry And Industry, 19, 390 (1982)

Rizvi, S. S. H., J. A. Daniel, A. L. Benado, J. A. Zollveg, ”Supercritical fluid extraction : Operating principles and food applicant”, Food Technol, 6, 57 (1986)

Schimtt, W. J., M. C. Salada, C. G. Shook, S. M. III Speaker, “Finely-divided powders by carrier solution injection into a near or supercritical fluid”, AIChE J. 41, 2476 (1995)

Tan, C. S., H. Y. Lin, “Precipitation of polystyrene by spraying polystyrene-toluene solution into compressed HFC-134a”, Industrial & Engineering Chemistry Research, 38, 3898 (1999)

Wu, H. T., M. J. Lee, H. M. Lin, “Nano-particles formation for pigment red 177 via a continuous supercritical anti-solvent process”, Journal of Supercritical Fluids, 33, 173 (2005)

Yeo, S. D., J. H. Choi, T. J. Lee, “Crystal formation of BaCl2 and NH4Cl using a supercritical fluid anti-solvent”, Journal of Supercritical Fluids, 16, 235 (2000)

Yeo, S. D., G. B. Lim, P. G. Debenedetti, H. Bernstein, “Formation of microparticles protein powders using a supercritical fluid anti-solvent”, Biotechnology and Bioengineering, 41, 341 (1993)

Yeo, S. D., J. C. Lee, “Crystallization of sulfamethizole using the supercritical and liquid antisolvent process”, Journal of Supercritical Fluids, 30, 315 (2004)

Young, T. J., K. P. Johnston, K. Mishima, H. Tanaka, “Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent”, Journal of Pharmacological Sciences, 88(6), 640 (1999)

林河木, 李明哲, “超臨界流體系統平衡溶解度之量測及關連”, 化工技術, 第六卷, 第十期, 120 (1998)

巒大齊, “PMMA的傳統用途與光電科技”, 化工技術, 第九卷, 第三期, 220 (2001)

戴怡德, “超臨界流體技術在新材料開發上應用”, 化工技術, 第六卷,第十期, 188 (1998)

鐘裕杰, “超臨界二氧化碳反溶劑法製備mCOC微粒”, 長庚大學化工暨材料工程研究所碩士論文, 2003

王詩涵, “以超臨界二氧化碳反溶劑法製備PLGA微粒”, 長庚大學化工暨材料工程研究所碩士論文, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top