Abrahamson, J. Collision Rates of Small Particles in a Vigorously Turbulent Fluid. Chem. Eng. Sci. 1975, 30, 1371.
Barthelmes, G.; Pratsinis, S.E.; Buggisch, H. Particle Size Distributions and Viscosity of Suspensions Undergoing Shear-Induced Coagulation and Fragmentation. Chem. Eng. Sci. 2003, 58, 2893.
Brown, D.L.; Glatz, C. E. Aggregation Breakage in Protein Precipitation. Chem. Eng. Sci. 1987, 42, 1831.
Chesters, A. K. The Modelling of Coalescence Processes in Fluid Liquid Dispersions: A Review of Current Understanding. Chem. Eng. Research & Design, 1991, 69, 259.
Chin, C. J.; Yiacoumi, S.; Tsouris, C. Shear-Induced Flocculation of Colloidal Particles in Stirred Tanks. J. Colloid Interface Sci. 1998, 206, 532.
Doraiswamy, D.; Chimmili, S. ; Gupta, R. K. Shear-induced Agglomeration of Particulate Suspensuions. Ind. Eng. Chem. Res. 1998, 37, 2073.
Elimelech, M.; Gregory, J.; Jia, X.; Williams, R. A., Particle Deposition and Aggregation: Butterworth Heinemann, 1995.
Gardner, K. H.; Theis, T. L.; Young, T. C. The Significance of Shear Stress in the Agglomeration of Fractal Aggregates. Water Research, 1998, 32, 2660.
Hansen, P. H. F.; Malmsten, M.; Bergenstahl, B.; Bergstrom, L. Orthokinetic Aggregation in Two Dimensions of Monodisperse and Bidisperse Colloidal Systems. J. Colloid Interface Sci, 1999, 220, 269.
Hogg, R., Flocculation Phenomena in Fine Particle Dispersions. Adv. Ceramics 1987, 21: Ceramic Powder Science, 467.
Katzer, M., & Schmidt, E.. Untersuchungen zum Wachstum
feinster Partikel in der Gasphase bei elektrischer Beein&uSung.
Chemie Ingenieur Technik, 1998, 70, 108.
Kusters, K. A.; Wijers, J. G.; Thoenes, D. Aggregation Kinetics of Small Particles in Agitated Vessels. Chem. Eng. Sci. 1997, 52, 107.
Lin, M.Y.; Lindsay, H.M.; Weitz, D. A.; Ball, R. C.; Meakin, P. Universality in Colloid Aggregation. Nature, 1989, 339, 360.
Meesters, A.; Ernst, M. H. Numerical Evaluation of Self-preserving Spectra in Smoluchowski Coagulation Theory. J. Colloid Interface Sci. 1987, 119, 249.
Oles, V. Shear-Induced Aggregation and Breakup of Polystyrene Latex Particles. J. Colloid Interface Sci. 1992, 154, 351.
Pietsch, W., Size Enlargement by Agglomeration. Wiley: Salle & Sauerlander, 1991.
Shiau, L. D. The Aggregate Size Evolution in the Aggregation Process. Unpublished manuscript, 2005.
Shiau, L. D. Recovery of the Nucleation and Agglomeration Rates in a Mixed-suspension, Mixed-product-removal Agglomerating Crysyallizer. Unpublished manuscript, 2005.
Serra, T.; Colomer, J.; Casamitjana, X. Aggregation and Breakup of Particles in a Shear Flow. J. Colloid Interface Sci. 1997, 187, 466.
Selomulya C.; Bushell G.; Amal, R.; Waite, T. D. Aggregation Mechanism of Latex Different Particle Sizes in a Controlled Shear Environment. Langmuir 2002, 18, 1974.
Saffman, P. G. and Turner, J. S., J Fluid Mech,1956, 1, 16.
Smoluchowski, M. Versuch einer mathematischen Theeorie der Koagulationskinetic kolloider Losungen., Z. Phys. Chem. 1917, 92, 129.
Teresa, S. ; Xavier, C : Effect of the Shear and Volume Fraction on the
Aggregation and Breakup of Particles. AICHE Journal.1998, 44,1724.
Torres, F. E.; Russel, W. B.; Schowalter, W. R. Floc Structure and Growth Kinetics for Rapid Shear Coagulation of Polystyrene Colloids.
J. Colloid Interface Sci. 1991, 142, 554.
曾鍵翔, 以棕櫚油作為車輛引擎潤滑油之可行性探討, 國立中山大學環境工程研究所, 碩士論文, 2000。賴耿陽, 凝集工學-基礎及應用, 復漢出版社, 1990。