跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:程志偉
研究生(外文):Cheng. Chih. Wei.
論文名稱:攪拌槽中之粒子凝聚
論文名稱(外文):Shear-induced agglomeration of particles in a stirred tank.
指導教授:蕭立鼎
指導教授(外文):Shiau L. D.
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:113
中文關鍵詞:攪拌槽 粒子凝聚 剪力誘發
外文關鍵詞:stirred tankparticle agglomerationshear-induced
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗包含兩部分(1)分析擾流中起初分散良好的粉粒體(Latex particles)在攪拌槽(Stirred tank)裝置中,受到均勻攪拌後引起粒子凝聚的情形,改變的參數為攪拌槽攪拌速率、懸浮液成分等;(2)利用血球計數器(Cytometer)分析攪拌槽在不同溫度及攪拌速率下乳膠粒子的凝聚情形。實驗系統為平均粒徑分布5 、10 、15 之乳膠粒子懸浮在甘油水溶液中,利用光學顯微鏡(OM)和影像擷取系統拍下粉粒體凝聚影像,以影像分析系統處理數據。
實驗中改變攪拌槽攪拌速率、懸浮液體的黏度、乳膠粒子體積分率及粒子平均粒徑分佈等因素來觀察乳膠粒子在甘油水溶液中的凝聚現象。可以發現在不同攪拌槽攪拌速率及懸浮液成分下,凝聚體成長的速率為時間之函數,數據顯示粉粒體大小在短凝聚時間下快速成長,經長時間攪拌後呈現平衡狀態,而決定出平衡凝聚體大小;所有觀察到之現象也符合實驗預期的結果。實驗中所提到的兩個參數碰撞分率 和平衡凝聚體半徑 ,可由實驗數據推算而得。另外也可求得三個攪拌槽經驗式的速率常數(Ka)。
The aggregation of an initially well-dispersed suspension of particulates due to shear-induced collision is examined in turbulent flow.
Experiments in turbulent flow are conducted by a stirred tank on latex particles suspended in aqueous glycerol. The corresponding shear rate in turbulent flow is calculated as a function of the stirring rate. The rate of aggregation is measured as a function of time for different shear rates and suspension compositions. The experiments show that the aggregate size increases rapidly in the early stage and then gradually reaches an equilibrium value due to the influence of hydrodynamic shear stress. An aggregation model is developed in this work to recover the collision efficiency and the equilibrium aggregate size from the experiment data.
第一章 序論……………………………………………………. 1
第二章 文獻回顧………………………………………………. 3
2-1-1 Colloidal and suspended particles…………3
2-1-2 分散系介紹……………………………………………. 3
2-2 凝聚之簡介………………………………..........5
2-3 碰撞與凝聚理論………………………………………. 7
2-4 凝聚機制………………………………………………. 9
2-4-1 Perikinetic aggregation……………………….10
2-4-2 Orthokinetic aggregation………………………14
2-4-3 Differential sedimentation……………………17
2-4-4 連續粒子大小分佈……………………………………. 19
2-5 聚集物型式……………………………………….....21
2-5-2 Fractal cluster………..…………………………21
2-5-2 Collision rates of fractal aggregates…..24
2-6 Collision efficiencies………………………….24
2-6-1 Stability ratio – the Fuchs approach……25
2-6-2 Orthokinetic collision efficiencies………26
第三章 原理……………………………………………………. 35
3-1 理論……………………………………………………. 35
第四章 實驗裝置與步驟………………………………………. 40
4-1 實驗藥品與裝置………………………………………. 41
4-1-1 實驗藥品………..…………………………………….41
4-1-2 甘油………..………………………………………….41
4-1-3 Latex Particles….………………………………41
4-2 黏度……………………............. .......42
4-3-1 攪拌槽……………………....................43
4-3-2 超音波振盪器……………………...............44
4-4 分析儀器………………………………………………. 44
4-5 實驗步驟………………………………………………. 45
4-5-1 攪拌槽粒子凝聚實驗………...................45
4-4 黏度測定…….………………………………………… 46
4-5 黏度結果………………………………………………. 47
第五章 結果與討論……………………………………….....56
5-1 攪拌槽攪拌速率對平衡凝聚體大小的影響…………. 57
5-2 懸浮液黏度對平衡凝聚體大小的影響……….......57
5-3 粒子平均粒徑分布對平衡凝聚體大小的影響………. 58
5-4 粒子體積分率對平衡凝聚體大小的影響……….....59
5-5 攪拌槽凝聚速率經驗式…………………..........60
5-5-1 經驗式分析攪拌槽之粒子凝聚………………………. 61
5-6 血球計數器凝聚速率經驗式…………………………. 62
5-6-2 經驗式分析血球計數器之粒子凝聚………………… 64
第六章 結論………………………………………..........107
參考文獻……………………………………………………….. 109
Nomenclature…………………………………………………...112
Abrahamson, J. Collision Rates of Small Particles in a Vigorously Turbulent Fluid. Chem. Eng. Sci. 1975, 30, 1371.
Barthelmes, G.; Pratsinis, S.E.; Buggisch, H. Particle Size Distributions and Viscosity of Suspensions Undergoing Shear-Induced Coagulation and Fragmentation. Chem. Eng. Sci. 2003, 58, 2893.
Brown, D.L.; Glatz, C. E. Aggregation Breakage in Protein Precipitation. Chem. Eng. Sci. 1987, 42, 1831.
Chesters, A. K. The Modelling of Coalescence Processes in Fluid Liquid Dispersions: A Review of Current Understanding. Chem. Eng. Research & Design, 1991, 69, 259.
Chin, C. J.; Yiacoumi, S.; Tsouris, C. Shear-Induced Flocculation of Colloidal Particles in Stirred Tanks. J. Colloid Interface Sci. 1998, 206, 532.
Doraiswamy, D.; Chimmili, S. ; Gupta, R. K. Shear-induced Agglomeration of Particulate Suspensuions. Ind. Eng. Chem. Res. 1998, 37, 2073.
Elimelech, M.; Gregory, J.; Jia, X.; Williams, R. A., Particle Deposition and Aggregation: Butterworth Heinemann, 1995.
Gardner, K. H.; Theis, T. L.; Young, T. C. The Significance of Shear Stress in the Agglomeration of Fractal Aggregates. Water Research, 1998, 32, 2660.
Hansen, P. H. F.; Malmsten, M.; Bergenstahl, B.; Bergstrom, L. Orthokinetic Aggregation in Two Dimensions of Monodisperse and Bidisperse Colloidal Systems. J. Colloid Interface Sci, 1999, 220, 269.
Hogg, R., Flocculation Phenomena in Fine Particle Dispersions. Adv. Ceramics 1987, 21: Ceramic Powder Science, 467.
Katzer, M., & Schmidt, E.. Untersuchungen zum Wachstum
feinster Partikel in der Gasphase bei elektrischer Beein&uSung.
Chemie Ingenieur Technik, 1998, 70, 108.
Kusters, K. A.; Wijers, J. G.; Thoenes, D. Aggregation Kinetics of Small Particles in Agitated Vessels. Chem. Eng. Sci. 1997, 52, 107.
Lin, M.Y.; Lindsay, H.M.; Weitz, D. A.; Ball, R. C.; Meakin, P. Universality in Colloid Aggregation. Nature, 1989, 339, 360.
Meesters, A.; Ernst, M. H. Numerical Evaluation of Self-preserving Spectra in Smoluchowski Coagulation Theory. J. Colloid Interface Sci. 1987, 119, 249.
Oles, V. Shear-Induced Aggregation and Breakup of Polystyrene Latex Particles. J. Colloid Interface Sci. 1992, 154, 351.
Pietsch, W., Size Enlargement by Agglomeration. Wiley: Salle & Sauerlander, 1991.
Shiau, L. D. The Aggregate Size Evolution in the Aggregation Process. Unpublished manuscript, 2005.
Shiau, L. D. Recovery of the Nucleation and Agglomeration Rates in a Mixed-suspension, Mixed-product-removal Agglomerating Crysyallizer. Unpublished manuscript, 2005.
Serra, T.; Colomer, J.; Casamitjana, X. Aggregation and Breakup of Particles in a Shear Flow. J. Colloid Interface Sci. 1997, 187, 466.
Selomulya C.; Bushell G.; Amal, R.; Waite, T. D. Aggregation Mechanism of Latex Different Particle Sizes in a Controlled Shear Environment. Langmuir 2002, 18, 1974.
Saffman, P. G. and Turner, J. S., J Fluid Mech,1956, 1, 16.
Smoluchowski, M. Versuch einer mathematischen Theeorie der Koagulationskinetic kolloider Losungen., Z. Phys. Chem. 1917, 92, 129.
Teresa, S. ; Xavier, C : Effect of the Shear and Volume Fraction on the
Aggregation and Breakup of Particles. AICHE Journal.1998, 44,1724.
Torres, F. E.; Russel, W. B.; Schowalter, W. R. Floc Structure and Growth Kinetics for Rapid Shear Coagulation of Polystyrene Colloids.
J. Colloid Interface Sci. 1991, 142, 554.
曾鍵翔, 以棕櫚油作為車輛引擎潤滑油之可行性探討, 國立中山大學環境工程研究所, 碩士論文, 2000。
賴耿陽, 凝集工學-基礎及應用, 復漢出版社, 1990。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top