跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 13:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉星廷
研究生(外文):Hsin-Tin Yeh
論文名稱:添加奈米二氧化矽及沸石於PDMS薄膜作溫室氣體分離之研究
論文名稱(外文):Separation of greenhouse gases using poly(dimethyl siloxane) nanocomposite membranes
指導教授:呂幸江
指導教授(外文):Shingjiang Jessie Lue
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:溫室氣體氣體分離聚二甲基矽膠複合膜
外文關鍵詞:greenhouse gasesgases separationPDMS nanocomposite membranes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用聚二甲基矽膠薄膜(polydimethylsiloane,簡稱PDMS),針對幾種常見的溫室氣體二氧化碳(CO2)、 六氟化硫(SF6) 從氮氣(N2)中作分離回收研究。探討添加不同性質約相同體積分率的填充物(Filler),奈米二氧化矽 (naro-particle)和兩種不同孔徑大小的沸石粒子(Type-Y、ZSM-5)於PDMS薄膜中,在25℃不同壓差下對溫室氣體滲透量(permeate)影響的比較。所有氣體分離研究中,發現當壓差改變時,N2、SF6氣體於薄膜中的滲透量會隨著壓差上升而降低,而CO2則隨著壓差上升而增加。N2、SF6在壓差為1時滲透率為514和873(Barrer),CO2在壓差為6時滲透率為2571(Barrer)。SF6/ N2(壓差為1), CO2/ N2(壓差為6)理想選擇度各為1.7和14.2。在膜材中添加相同體積分率為7.5%的填充物,奈米二氧化矽、沸石(Type-Y及ZSM-5)製備的複合膜對三種氣體滲透率影響;PDMS-FS複合膜接近於PDMS膜,PDMS-Y複合膜降低三種氣體的滲透率最多,PDMS-ZSM複合膜提升CO2的滲透率最高。三種複合膜理想選擇度,SF6/ N2(壓差為1) 各為1.14、1.5和1.47; CO2/ N2(壓差為6)選擇度各為9.73、9.47和9.24。添加於膜材中ZSM-5沸石含量增為40Wt.%,壓差為6下,N2滲透率從285降至172,CO2從2634增至3111Barrer, SF6/ N2、CO2/ N2理想選擇度各為2.3及18.1。所有氣體於PDMS-ZSM複合膜分離實驗值會與麥斯威爾方程式預測理論值做比較。
Greenhouse effect has become a crucial environmental issue due to the global warming phenomena around the world. Searching for separation and recovery methodology is one of the key components to solve this long-term problem. This research studies the use of polydimethyl siloxane (PDMS) membrane with or without filler (nanoparticles and zeolite) to separate greenhouse gases (CO2 and SF6) from N2.The results show that the nitrogen and SF6 permeabilities decreased with gas pressure while CO2 permeability increased with upstream pressure. PDMS-fumed silica (addition content 15Wt.%) nan- -ocomposite membranes showed higher permeabilities for N2 and SF6 gases, but lower CO2 permeability. The selectivity for SF6/N2 or CO2/N2 gas pair was slightly reduced compared with the PDMS membrane. PDMS-Zeolite (Type-Y) (addition content 12Wt.%) composite membranes showed reduced the CO2 permeabilities.The N2 and SF6 permeability was similar to that of the pure PDMS. The SF6/N2 or CO2/N2 selectivity was similar to that of the pure PDMS. PDMS-Zeolite (ZSM-5) (addition content 12-40Wt.%) composite membranes showed reduced the N2 and increased CO2 permeabilities, but had no significant effect SF6 on the permeability. The selectivity increased with zeolite content for CO2/N2.The SF6/N2 selectivity was similar to that of the pure PDMS.All PDMS-ZSM experimental data will simulation and analysis with Maxwell model .
指導教授推薦書
口試委員會審定書
長庚大學授權書iii
誌謝iv
中文摘要v
英文摘要vi
目錄vii
圖目錄ix
表目錄xii
第一章、前言1
第二章、文獻回顧3
2.1.主要溫室氣體(Greenhouse effect GHG)的介紹3
2.2.二氧化碳和含氟氣體的處理方法6
2.3.溫室氣體分離原理9
2.4.溫室氣體分離的操作變因15
2.4.1.氣體滲透率(Permeability)15
2.4.2.混合氣體的選擇度(Selectivity)16
2.5.麥斯威爾方程式(Maxwell equation)18
2.6.奈米二氧化矽(Fuemd silica)和沸石(zeolite)介紹19
2.6.1.奈米二氧化矽(Fuemd silica)19
2.6.2.沸石(zeolite)19
第三章、材料與方法 28
3.1.材料與設備28
3.2.實驗方法30
3.2.1.薄膜製備30
3.2.1.1.PDMS膜的製備30
3.2.1.2.PDMS+奈米二氧化矽(TS-720)複合膜製備30
3.2.1.3. PDMS+沸石(ZSM-5)複合膜製備30
3.2.1.4. PDMS+沸石(Type-Y)複合膜製備31
3.2.2.時際厚度量測31
3.2.3.溫室氣體分離實驗31
3.3.實驗流程31
第四章、結果與討論 34
4.1.PDMS氣體滲透實驗34
4.2.三種複合膜對氣體分離影響(以相同體積分率比較)44
4.3.添加ZSM-5沸石含量對氣體滲透率的影響和模擬分析50
第五章、結論66
參考文獻67
附錄76
http://www.epa.gov.tw/b/b0100.asp?Ct_Code=04X0000149X000

http://www.tsia.com.tw,TSIA(台灣半導體產業協會網址),

T. Banerjee, M. Chhajer, G.G. Lipscomb, Direct measure of the heat of carbon dioxide sorption in polymeric materials, Macromolecules 28
(1995) 8563-8570

F.Y. Jou, A.E. Mather, F.D. Otto, The solubility of CO2 in a 30 mass
percent monoethanolamine solution, Canad. J. Chem. Eng. 73 (1995)
140-147.

K.P. Shen, M.H. Li, Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine, J. Chem. Eng. Data 37
(1992) 96-100.

T. Suzuki, K. Ohtaguchi, K. Koide, Effects of gas flow rate of CO2
enriched air, high CO2 concentration, and anaerobic atmosphere on the growth of blue-green alga Anacystis nidulans, J. Chem. Eng. Jpn. 24 (1991) 797-798.

Y. Watanabe, N. Ohmura, H. Saiki, Isolation and determination of
cultural characteristics of microalgae which functions under CO2
enriched atmosphere, Energy Convers. Mgmt. 33 (1992) 545-552.

http://www.tri.org.tw/unfccc/main01.htm

V. Vartanian, L. Beu, T. Lii, B. Wofford, C. Hartz, J. Bevan, Evaluation of RF environmental systems/Texas A&M University surface wave plasma device for abatement of perfluorocompound (PFC) emissions (ESHC005), International SEMATECH Technology Transfer #
98093561AENG (1998)

http://www.itri.org.tw/cfc/co2/15/gw15_4.pdf,工業技術研究院化學
工業研究所

A. Bandi, H.M. Kuhne, Electrochemical reduction of carbon dioxide
inwater: analysis of reaction mechanism on ruthenium-titanium-oxide, J.Electrochem. Soc. 139 (1992) 1605-1610.

黃俊博,電漿技術應用於轉化二氧化碳及甲烷之初步研究,國立中
央大學碩士論文,台灣(1997)

L.M. Robeson, Polymer membranes for gas separation, Current Opinion in Solid State and Materials Science 4 (1999) 549–552

H. B. Park, C. K. Kim, Y. M. Lee,Gas separation properties of
polysiloxane/polyether mixed soft segment urethane urea membranes J.
Membr. Sci. 204 (2002) 257-269

N. Muruganandam, D.R. Paul, Evaluation of substituted polycarbonates and a blend with polystyrene as gas separation membranes, J. Membr. Sci. 34 (1987) 185.

M. Aguilar-Vega, D.R. Paul, Gas transport properties of polyphen ylene ethers, J. Polym. Sci. Part B: Polym. Phys. 31 (1993) 1577.

S.A. Stern, Polymers for gas separations: the next decade, J. Membr. Sci. 94 (1994) 1-65.

C. Hibshman, C.J. Cornelius, E. Marand, The gas separation effects of annealingpolyimide–organosilicate hybrid membranes, J. Membr. Sci. 211 (2003) 25-40.

S.A. Stern, Y. Mi, H. Yamamoto, A.K. St. Clair,Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures, J. Polym. Sci. Part B: Polym. Phys. 27 (1989) 1-14.

T.H. Kim, W.J. Koros, G.R. Husk, K. O’Brien, Relationship between gas separation properties and chemical structure in a series of aromatic polyimides, J. Membr. Sci. 37 (1988) 45-62.


Z.-K. Xu, C. Dannenberg, J. Springer, S. Banerjee, G. Maier, Novel poly(arylene ether) as membranes for gas separation, J. Membr. Sci. 205 (2002) 23-31.

H. Lin, B.D. Freeman, Gas solubility, diffusivity and permeability in poly(ethylene oxide), J. Membr. Sci. 239 (2004) 105-117.

C.M. Zimmerman, W.J. Koros, Polypyrrolones for membrane gas separations.I. Structural comparison of gas transport and sorption properties, J. Polym. Sci. Part B: Polym. Phys. 37 (1999) 1235-1249.

J.S. McHattie, W.J. Koros, D.R. Paul, Gas transport properties of polysulphones. 1. Role of symmetry of methyl group placement on bisphenol rings, Polymer 32 (1991) 840-850.

C. Hibshman, C.J. Cornelius, E. Marand, The gas separation effects of annealing polyimide–organosilicate hybrid membranes, J. Membr. Sci. 211 (2003) 25-40.

Y. Hirayama, N. Tanihara,Y. Kusuki, Y. Kase, K. Haraya K. Okamoto, Permeation properties to hydrocarbons, perfluorocarbons and chlorofluorocarbons of cross-linked membranes of polymethacrylates with poly(ethylene oxide) and perfluorononyl moieties, J. Membr. Sci. 163 (1999) 373–381

J.G.Wijmans, Z. He, T.T. Su, R.W. Baker, I. Pinnau, Recovery of
perfluoroethane from chemical vapor deposition operations in the
semiconductor industry, Sep. Purif. Technol. 35 (2004) 203-213.

T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, Gas
sorption, diffusion, and permeation in poly(dimethylsiloxane), J.
Polym. Sci. B, Polym. Phys. 38 (2000) 415-434.

T.C. Merkel, V. Bondar, K. Nagai, B.D. Freeman, Sorption and
transport of hydrocarbon and perfluorocarbon gases in poly(1-trime thylsilyl-1-propyne), J. Polym. Sci. B, Polym. Phys. 38 (2000) 273-296.

Y. Hirayama, N. Tanihara, Y. Kusuki, Y. Kase, K. Haraya, K.I.
Okamoto, Permeation properties to hydrocarbons, perfluorocarbons
and chlorofluorocarbons of cross-linked membranes of polymetha crylates with poly(ethylene oxide) and perfluorononyl
moieties J. Membr. Sci. 163 (1999)373-381.

K. Aoki, V. A. Tuan, J. L. Falconer, R. D. Noble, Gas permeation properties of ion-exchanged ZSM-5 zeolite membranes, J. Membr. Sci. 39 (2000) 485-492.

Y. Hasegawa, K. Kusakabe, S. Morooka, Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube, Chemical Engineering Science 56 (2001) 4273–4281.

www.cabot-corp.com.

T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin , A.J. Hill, Sorption transport and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes, Chem. Mater. 15 (2003) 109-123.

T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable,reverse-selective nanocomposite membranes, Science 296 (2002) 519-522.

A.L. Andrady, T.C. Merkel, L.G. Toy, Effect of particle size on gas permeability of filled superglassy polymers, Macromolecules 37 (2004) 4329-4331.

N.P. Patel, A.C. Miller, R.J. Spontak, Highly CO2-permeable and -selective membranes derived from crosslinked poly(ethylene glycol) and its nanocomposites, Adv. Funct. Mater. 14 (2004) 699-707.

M. Jia, K. V. Pememann and R. D. Behlmg, Preparation and characterzation of thin-film zeolite-PDMS composite membrane , J. Membr. Sci. 73 (1992) 119-128.

http://www.cabot-corp.com/cws/businesses.nsf/CWSID/ cwsBUS01182001023448PM6848?OpenDocument

L. Lebrun, S. Bruzaud, Y. Grohens, D. Langevin, Elaboration and characterisation of PDMS-HTiNbO5 nanocomposite membranes, European Polymer Journal 42 (2006) 1975–1985.

N. P. Patela, C. M. Aberga, A. M. Sancheza, M. D. Capracottab,J. D. Martinb, R. J. Spontaka, Morphological mechanical and gas-transport characteristics of crosslinked poly(propylene glycol): homopolymers, nanocomposites and blends. J. Polym. Sci. 45 (2004) 5941-5950.

H. Zhenjie, P. Ingo, M. Atsushi Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation, Desalination 146 (2002) 11-15.

K. D. Sitter, P. Winberg, J. D. Haen, C. Dotremont , R. Leysen, J. A. Martens, S. M. Frans, H.J. Maurer, I. F.J. Vankelecom, Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes:Relation between the transport of gases and structural characteristics, J. Membr. Sci. 278 (2006) 83–91.

J. Compton, D. Thompson, D. Kranbuehl, S. Ohl, O. Gain, L. David, E. Espuche,* Hybrid films of polyimide containing in situ generated silver or palladium nanoparticles: Effect of the particle precursor and of the processing conditions on the morphology and the gas permeability, J. Polym. Sci 47 (2006) 5003–5013.

R. Stephen, C. Ranganathaiah, S. Varghese, K. Joseph, S. Thomas, Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes, J. Polym. Sci. 47 (2006) 858-870.

N.P. Patel, A.C. Miller, R.J. Spontak, Highly CO2-permeab Ranimol Stephen a, C. Ranganathaiah b, Siby Varghese c, Kuruvilla Joseph d, Sabu Thomas a,* Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes, J. Polym. Sci. 47 (2006) 858-870.

N.P. Patel, A.C. Miller, R.J. Spontak, Highly CO2-permeab le and -selective membranes derived from crosslinked poly(ethylene glycol) and its nanocomposites, Adv. Funct. Mater. 14 (2004) 699-707.

T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin , A.J. Hill, Sorption transport and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes, Chem. Mater. 15 (2003) 109-123.

chemelab.ucsd.edu/ methanol/memos/ZSM-5.html

G. Clarizia, C. Algieri, E. Drioli, Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane J. Polym. Sci. 45 (2004) 5671-5681.

B. T. Ersolmaz , C. A. Oral, M. Tatlıer,A. E. Senatalar, B. Schoeman, J. Sterte, Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes 285 (2000) 285-288.

M. D. Jla, K. V. Pememann and R. D. Behlmg, Preparation and characterization of thin-film zeolite-PDMS composite membranes, J. Membr. Sci, 73(1992) 119–128.

M. Jia, K. V. Peinemann, R. D. Behling, Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation, J. Membr. Sci, 57(1990) 289–296.

M. G. Siier, N. BaC, L. Yilmaz, Gas permeation characteristics of polymer-zeolite mixed matrix membranes, J. Membr. Sci. 91 (1994)77-86.

T. M. GiiP, Permselectivity of zeolite filled polysulfone gas separation Membranes, J. Membr. Sci. 93 (1994) 283-289.

T. W. Pechaf, M. Tsapatsisb, E. Marand, R. Davis, Preparation and characterization of a glassy fluorinated polyimide zeolite-mixed matrix membrane, Desalination 146 (2002) 3-9

T. Nakagawa, T. Nishimura, A. Higuchi, Morphology and gas permeability in copolyimides containing polydimethylsiloxane block, J. Membr. Sci., 206 (2002) 149-163


M. Wessling, M. L. Lopez, H. Strathman, Accelerated plasticization of thin-film composite membranes used in gas separation, Separ. Purif. Technol., 24 (2001) 223-233.

P. Jha, L. W. Masonb, J. D. Way, Characterization of silicone rubber membrane materials atlow temperature and low pressure conditions, J. Membr. Sci. 272 (2006) 125–136.

Y. Hirayama, N. Tanihara, Y. Kusuki, Y. Kase, K. Haraya, and K.I. Okamoto, “Permeation properties to hydrocarbons, perfluorocarbons and chlorofluorocarbons of cross-linked membranes of polymethacrylates with poly(ethylene oxide) and perfluorononyl moieties,” J. Membr. Sci., 163 (1999) 373-381.

F. Wu, L. Li, Z. Xu, S. Tan, Z. Zhang , Transport study of pure and mixed gases through PDMS membrane, J. Membr. Sci., 117 (2006) 51-59.

L. Lebrun, S. Bruzaud, Y. Grohens, D. Langevin, Elaboration and characterisation of PDMS-HTiNbO5 nanocomposite membranes, European Polymer Journal 42 (2006) 1975–1985.

J. M . Duva, B. Folkers, M. H. V. Mulder, G. D. champsb, CA. Smolders, Adsorbent filled membranes for gas separation. Part 1.Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents*, J. Membr. Sci, 80 (1993) 189-198.

R. V. Jasra, N. V. Choudary and S. G.T. Bhat, Separa- tion of gases by pressure swing adsorption, Sep. Scl. Technol ,26(7) (1991) 885

K. Aoki, V. A. Tuan, J. L. Falconer, R. D. Noble, Gas permeation properties of ion-exchanged ZSM-5 zeolite Membranes, Microporous and Mesoporous Materials 39 (2000) 485-492
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top