跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李崇漢
研究生(外文):Tsung-Han Lee
論文名稱:有機溶劑可溶聚[(氮-烷基酮)苯胺]之合成、結構與物性
論文名稱(外文):Studies on Syntheses, Structure, and Physical properties of Organic Solvent Soluble Polyanilines: Poly[N-(alkyl ketone)aniline]s
指導教授:華沐怡
指導教授(外文):Mu-Yi Hua
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:82
中文關鍵詞:聚苯胺衍生物有機可溶
外文關鍵詞:polyanilinederivativeorganic soluble
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本文以聚苯胺聚合體做進一步改質,於聚苯胺主鏈上導入四種不同長度之直鏈醛類化合物:丁醛、庚醛、辛醛及癸醛,成功的合成出具氮上酮烷基側鏈之聚苯胺衍生物,稱之為聚[(氮-烷基酮)苯胺],並探討此聚苯胺衍生物之結構與物性。由核磁共振儀 (NMR)、紅外線光譜儀 (IR) 及 X-射線光電子光譜儀 (XPS) 可確定聚[(氮-烷基酮)苯胺]的結構及接枝率。由溶解度、紫外光-可見光-近紅外光光譜儀 (UV-Vis near IR) 及真實溶液測試,可得知聚[(氮-烷基酮)苯胺] 隨著側鏈長度增加,對於 THF、乙醇、甲醇及丙酮等低沸點有機溶劑的溶解度增加,但對於 DMSO、NMP、DMF 及 DMAc 等高沸點極性溶劑的溶解度下降;由 X-ray 繞射儀分析 (XRD) 證明聚[(氮-烷基酮)苯胺] 為非晶型結構;由循環伏安儀 (CV) 得知,聚[(氮-烷基酮)苯胺] 與聚苯胺一樣具有兩對氧化還原峰與電化學活性,但第一對氧化還原峰往高電位偏移,而第二對氧化還原峰則往低電位偏移,此現象隨側鏈長度的增加而更加明顯;由熱重分析儀 (TGA) 及恆溫加熱實驗得知,聚[(氮-烷基酮)苯胺] 的最大裂解溫度及 700 ℃ 時的殘餘重量比例較聚苯胺低,且隨側鏈長度的增加而更低,並且於 200 ℃ 下具有熱穩定性;聚[(氮-烷基酮)苯胺] 可被鹽酸、氯化鐵及 DBSA 摻雜,經鹽酸及氯化鐵摻雜的導電度分別為 2.6×10-2 ~ 1.1×10-4 S/cm 及 2.110-1 ~ 2.010-3 S/cm,均較經鹽酸或氯化鐵摻雜的聚苯胺低,並隨側鏈長度的增加而降低,而經 DBSA 摻雜的聚[(氮-烷基酮)苯胺] 可溶於 DMSO 中。
Abstract
The purpose of this study is to modify the polyaniline (PAn) by incorporation with four compounds of normal aldehydes of different chain lengths: butyraldehyde, heptanal, octanal, and decanal. The four kinds of N-keto-alkylated polyanilines, which were poly[(N-butyl ketone)aniline], poly[(N-heptyl ketone)aniline], poly[(N-octyl ketone)aniline], and poly[(N-decyl ketone)aniline] were successfully synthesized.
By the NMR, IR, and XPS spectra, we confirmed that the derivatives have keto- and normal alkyl-groups. For UV-Vis spectra and true solution, the solubility of poly[(N-alkyl ketone)aniline]s in general organic solvents (such as tetrahydrofuran, ethanol, methanol, and acetone) increased with increasing the length of side-chain, whereas the solubility of derivatives decreased in the polar solvents (such as DMSO, NMP, DMF, and DMAc). In the XRD spectra, the structures of polyaniline derivatives were amorphous. In cyclic voltammorgram analysis, the derivatives all have two redox peaks and electrochemical activities, which were similar to that of PAn. It showed that the first and the second redox peaks shifted toward higher and lower potentials, respectively. Such potential shifting become more obviously with increasing the chain length.
With TGA analysis, the maxima decomposed temperature and the char yield at 700 ℃ of polyaniline derivatives were lower than that of PAn, and decreased with increasing of the side-chain length. The derivatives were very stable at 200 ℃. The conductivity of derivatives doped by hydrochloride and ferric chloride were in the range of 2.6×10-2 ~ 1.1×10-4 S/cm and 2.110-1 ~ 2.010-3 S/cm, respectively, which were lower than that of PAn doped by hydrochloride and ferric chloride. The derivatives doped by DBSA could be dissolved in DMSO solution.
指導教授推薦書 …………………………………………………………………………… I
口試委員會審定書 ………………………………………………………………………… II
授權書 ……………………………………………………………………………………… III
誌謝 ………………………………………………………………………………………… V
中文摘要 …………………………………………………………………………………… VI
英文摘要 …………………………………………………………………………………… VII
目錄 ………………………………………………………………………………………… VIII
圖目錄 ……………………………………………………………………………………… XI
表目錄 ……………………………………………………………………………………… XIV
第一章 緒論 ……………………………………………………………………………… 1
1-1 前言 …………………………………………………………………………………… 1
1-2 研究目的 ……………………………………………………………………………… 3
第二章 文獻回顧 ………………………………………………………………………… 5
2-1 聚苯胺簡介 …………………………………………………………………………… 5
2-2 聚苯胺合成 …………………………………………………………………………… 7
2-2-1 電化學法 …………………………………………………………………………… 7
2-2-2 化學氧化法 ………………………………………………………………………… 7
2-2-3 乳化聚合法 ………………………………………………………………………… 8
2-2-4 兩相界面聚合法 (interfacial polymerization) …………………………………… 9
2-3 聚苯胺之摻雜與物性分析 …………………………………………………………… 11
2-3-1 聚苯胺之摻雜 ……………………………………………………………………… 11
2-3-2 傅利葉轉換紅外線 (FT-IR) 光譜分析 …………………………………………… 13
2-3-3 紫外光-可見光-近紅外光吸收光譜分析 ………………………………………… 14
2-3-4 核磁共振 (NMR) 光譜分析………………………………………………………… 15
2-3-5 X-射線光電子光譜 (XPS) 分析 …………………………………………………… 16
2-3-6 導電度分析 ………………………………………………………………………… 17
2-4 聚苯胺之改質與應用 ………………………………………………………………… 18
2-4-1 環上取代之聚苯胺衍生物 ………………………………………………………… 18
2-4-2 氮上取代之聚苯胺衍生物 ………………………………………………………… 22
第三章 實驗內容 ………………………………………………………………………… 27
3-1 藥品 …………………………………………………………………………………… 27
3-2 藥品純化 ……………………………………………………………………………… 28
3-3 儀器設備及檢測方法 ………………………………………………………………… 29
3-4 合成步驟 ……………………………………………………………………………… 31
3-4-1 聚苯胺之合成 ……………………………………………………………………… 31
3-4-2 聚苯胺衍生物之合成 ……………………………………………………………… 32
第四章 結果與討論 ……………………………………………………………………… 34
4-1 核磁共振 (NMR) 光譜分析 …………………………………………………………… 34
4-2 紅外光光譜 (IR) 分析 ………………………………………………………………… 41
4-3 X-射線光電子光譜 (XPS)分析 ……………………………………………………… 45
4-4 紫外光-可見光-近紅外光 (UV-Vis-Near IR) 光譜分析 …………………………… 48
4-5 溶解度 (solubility) …………………………………………………………………… 52
4-6 真實溶液 (true solution) 之紫外光-可見光 (UV-Vis)光譜分析 …………………… 53
4-7 X-光繞射 (XRD) 圖譜分析 …………………………………………………………… 62
4-8 循環伏安 (CV) 圖譜分析 ……………………………………………………………… 63
4-9 熱重分析 (TGA) ……………………………………………………………………… 65
4-10 熱穩定性 (thermo stability) ………………………………………………………… 66
4-11 摻雜態 (doping-type) 紅外光光譜分析 …………………………………………… 67
4-12 摻雜態紫外光-可見光-近紅外光光譜分析 ………………………………………… 71
4-13 導電度 (conductivity) 分析 ………………………………………………………… 73
第五章 結論 …………………………………………………………………………………74
第六章 參考文獻 ……………………………………………………………………………76
參考文獻
1.何國賢、謝達華,“導電性塑膠簡介及應用”,塑膠資訊, No. 12 P28 (1997)。
2.J. C. W. Chien, “Polyacetylene: Physics, and Material Science”, Academic Press, Orlando (1984).
3.C. Kittel, “Introduction to Solid State Physics”, 6th ed., John Wiley and Sons, Singapore (1986).
4.H. Nakanishi and H. Matsuda “Research Institute of polymers and textiles”, ”conductive polymers”, Reported in a Journal issued by Business and Technology (1987), R.
5.A. A. Syed, and M. K. Dinesan, Talanta, 38, 815 (1991).
6.E. M. Genies, A. Boyle, M. Lapkowski, and C. Tsintaris, Synth. Met., 36, 139 (1990).
7.E. T. Kang, K. G. Neoh, K. L. Tan, T. Uyama, N. Morikawa, and Y. Ikada, Macromolecules, 25, 1959 (1992).
8.S. M. Yang, and T. S. Lin , Synth. Met., 29, 227 (1989).
9.H. S. O. Chan, P. K. H. Ho, E. Khor, M. M. Tan, K. L. Tan, B. T. G. Tan, and Y. K. Lin, Synth. Met., 32, 95 (1989).
10.Y. Lu, J. Li, and W. Wu, Synth. Met., 30, 87 (1989).
11.S. P. Armes, M. Aldissi, M. Hawley, J. G. Beery, and S. Gottesfeld, Langmuir, 7, 1447 (1997).
12.D. Rodrigue, P. Snauwaert, X. Demaret, J. Riga, and J. J. Verbist, Synth. Met., 41, 769 (1991).
13.J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, Macromolecules, 24, 779 (1991).
14.P. J. S. Foot, and R. Simon, J. Phys. D, Appl. Phys., 22, (1989) 1598.

15.H. L. Wang, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, and A. J. Epstein, Synth. Met., 78, 33 (1996).
16.S. A. Chen, K. R. Chuang, C. I. Chao, and H. T. Lee, Synth. Met., 82, 207 (1996).
17.D. W. DeBerry, J. Electrochem. Soc., 132, 1022 (1985).
18.W. K. Lu, R. L. Elsenbaumer, and B. Wessling, Synth. Met., 71, 2163 (1995).
19.A. G. MacDiarmid, Synth. Met., 84, 27 (1997).
20.M. Angelopoulos, A. Ray, A. G. MacDiarmid, and A. J. Epstein, Synth. Met., 21, 21 (1987).
21.Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 48, 91 (1992).
22.陳壽安、吳冠瑩、林志雄、黃桂武,“可溶於低沸點有機溶劑且具高分子量之聚氮-烷基 (或醚基) 苯胺及其摻合體之製造方法",中華民國專利 (1998)。
23.H. Letheby, J. Chem. Soc., 15, 161 (1862).
24.J. Fritzsche, J. Prakt. Chem., 20, 453 (1904).
25.A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 97, 2388 (1910).
26.A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 101, 1117 (1912).
27.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, W. Wu and S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121, 173 (1985).
28.A. G. MacDiarmid and A. J. Epstein, Faraday Discuss. Chem. Soc., 88, 317 (1989).
29.D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962).
30.M. Jozefowicz, J. Polym. Sci., C22, 1187 (1969).
31.W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem., 91, 5813 (1987).
32.A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri, and A. J. Epstein, "Polyaniline: synthesis and characterization of the emeraldine oxidation state by elemental analysis" in L. Alca'cer (ed.) "Conducting Polymers", D. Reidel Publishing Company. Dordrecht, Holland, p. 105, (1987).
33.J. P. Travers, J. Chroboczek, F. Devreux, F. Genoud, M. Nechtschein, A. Syed, E. M. Genies and C. Tsintavis, Mol. Cryst. Liq. Cryst., 121, 195 (1985).
34.A. Cihaner, and A. M. Önal, Eur. Polym. J., 37, 1767 (2001).
35.M. Inoue, R. E. Navarro, and M. B. Inoue, Synth. Met., 30, 199 (1989).
36.http://en.wikipedia.org/wiki/Emulsion_polymerization
37.P. J. Kinlen, J. Liu, Y. Ding, C. R. Graham, and E. E. Remsen, Macromolecules, 31, 1735 (1998).
38.M. G. Han, S. K. Cho, S. G. Oh, and S. S. Im, Synth. Met., 126, 53 (2002).
39.P. W. Morgan, Soc. Plast. Eng. J., 15, 485 (1959).
40.J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, J. Am. Chem. Soc., 125, 314 (2003).
41.A. J. Heeger, J. Phys. Chem. B, 15, 8475 (2001).
42.M. Y. Hua, G. W. Hwang, Y. H. Chuag, S. A. Chen, and R. Y. Tsai, Macromolecules, 33, 6235 (2000).
43.J. Tang, X. Jing, B. Wang, and F. Wang, Syn. Met., 24, 231 (1988).
44.O. P. Dimitriev, Macromolecules, 37, 3388 (2004).
45.F. L. Lu, F. Wudl, M. Nowak, and A. J. Heeger, J. Am. Chem. Soc., 108, 8311 (1986).

46.A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W. S. Huang, and A. G. MacDiarmid, Synth. Met., 18, 303 (1987).
47.A. G. MacDiarmid, J. C. Chiang, W. Huang, B. D. Humphery, and N. L. D. Somasiri, Mol. Cryst. Liq. Cryst., 125, 309 (1985).
48.S. Stafström, B. Sjögren, and J. L. Brédas, Synth. Met., 29, E219 (1989).
49.Y, Cao, S. Li, Z. Xue, and D. Guo, Synth. Met., 16, 305 (1988).
50.G. W. Hwang, K. Y. Wu, M. Y. Hua, H. T. Lee, and S. A. Chen, Synth. Met., 92, 39 (1998).
51.M. Angelopoulos, Y. H. Liao, B. Furman, and T. Graham, Macromolecules, 29, 3046 (1996).
52.M. Angelopoulos, R. Dipietro, W. G. Zheng, A. G. MacDiarmid, and A. J. Epstein, Synth. Met., 84, 35 (1997).
53.W. Zheng, M. Angelopoulos, A. J. Epstein, and A. G. MacDiarmid, Macromolecules, 30, 2953 (1997).
54.http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
55.Y. Cao, S. Li, Z. Xue, and D. Guo, Synth. Met., 16, 305 (1986).
56.http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
57.K. L. Tan, B. T. G. Tan, E. T. Kang, and K. G. Neoh, Phys. Rev. B, 39, 8070 (1989).
58.K. L. Tan, B. T. G. Tan, E. T. Kang, and K. G. Neoh, J. Chem. Phys., 94, 5382 (1991).
59.E. T. Kang, K. G. Neoh, K. L. Tan, and H. K. Wang, Synth. Met., 48, 231 (1992).
60.A. G. MacDiarmid, and A. J. Epstrin, Faraday Discuss. Chem. Soc., 88, 317 (1989).
61.S. A. Chen, and H. T. Lee, Macromolecules, 26, 3254 (1993).
62.D. Macinnes, Jr., and B. L. Funt, Synth. Met., 25, 235 (1988).
63.M. Leclerc, J. Guay, and L. H. Dao, Macromolecules, 22, 649 (1989).
64.Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, and A. G. MacDiarmid, J. Phys. Chem., 93, 495 (1989).
65.G. D. Storrier, S. B. Colbran, and D. B. Hibbert, Synth. Met., 62, 179 (1994).
66.J. Yue, and J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990).
67.J. Yue, Z.H. Wang, K.R. Cromack, A.J. Epstein, and A.G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
68.S. A. Chen, and G. W. Hwang, Macromolecules, 29, 3950 (1996).
69.X.-L. Wei, Y. Z. Wang, S. M. Long, C. Bobeczko, and A. J. Epstein, J. Am. Chem. Soc., 118, 2545 (1996).
70.R. M. Q. Mello, R. M. Torresi, S. I. Cordoba de Torresi, and E. A. Ticianelli, Langmuir, 16, 7835 (2000).
71.A. T. Royappa, D. D. Steadman, T. L. Tran, P. T. Nguyen, C. S. Prayaga, B. Cage, and N. Dalal, Synth. Met., 123, 273 (2001).
72.K. S. Hwang, C. W. Lee, T. H. Yoon, and Y. S. Son, Journal of Power Sources, 79, 225 (1999).
73.J. J. Xu, D. M. Zhou, and H. Y. Chen, Fresenius J. Anal. Chem., 362, 234 (1998).
74.B.piro, E. A. Bazzaoui, M. C. Pham, P. Novak, and O. Haas, Electrochim Acta, 44, 1953 (1999).
75.L. G. Xu, S. C. Ng, and H. S. O. Chan, Synth. Met., 123, 403 (2001).
76.C. Barbero, H. J. Salavagione, D. F. Acevedo, D. E. Grumelli, F. Garay, G. A. Planes, G. M. Morales, and M. C. Miras, Electrochimica Acta, 49, 3671 (2004).
77.C. DeArmitt, S. P. Armes, J. Winter, F. A. Uribe, S. Gottesfeld, and C. Mombourquette, Polymer, 34, 158 (1993).
78.A. Watanabe, K. Mori, A. Iwabuchi, Y. Iwasali, Y. Nakamura, and O. Ito, Macromolecules, 22, 3521 (1989).
79.J. W. Chevalier, J. Y. Bergeron, and L. H. Dao, Macromolecules, 25, 3325 (1992).
80.W. Y. Zheng, K. Levon, J. Laakso, and J. E. Österholm, Macromolecules, 27, 7754 (1994).
81.S. A. Chen, and G. W. Hwang, J. Am. Chem. Soc., 117, 10055 (1995).
82.G. W. Hwang, K. Y. Wu, M. Y. Hua, T. T. Lee, and S. A. Chen, Synth. Met., 92, 39 (1998).
83.M. Y. Hua, Y. N. Su, and S. A. Chen, Polymer, 41, 813 (2000).
84.C. H. McCoy, I. M. Lorkovic, and M. S. Wrighton, J. Am. Chem. Soc., 117, 6934 (1995).
85.G. Liu, and M. S. Freund, Chem. Mater., 8, 1164 (1996).
86.M. G. Mikhael, A. B. Padias, and H. K. Hall, Jr., J. polym. sci., Polym. chem. ed., 35, 1673 (1997).
87.E. M. Genies, M. Lapkowski, and C. Tsintavis, N. J. Chem., 12, 181 (1998).
88.J. Sun, L. Cheng, F. Liu, S. Dong, Z. Wang, X. Zhang and J. Shen, Colloids Surf. A, 169, 209 (2000).
89.M. R. Nabid, and A. A. Entezami, Polym. Adv. Technol., 16, 305 (2005).
90.S. R. Shin, S. J. Park, S. G. Yoon, G. M. Spinks, S. I. Kim, S. J. Kim, Synth. Met., 154, 213 (2005).
91.L. G. Wade, JR., “Organic Chemistry”, 5th Edition, 506, 1209-1211 (2003).
92.T. W. Graham Solomons, “Fundamentals of Organic Chemistry”, 5th Edition, 698-701,749-750 (1997).
93.R. M. Silverstein, F. X. Webster, “Spectrometric Identification of Organic Compounds”, 6th Edition, 81-109, 136-140 (1997).
94.http://140.96.171.7/source_program/

95.W. Zheng, M. Angelopoulos, A. J. Epstein, and A. G. MacDiarmid, Macromolecules, 30, 7634 (1997).
96.J. Yue, A. J. Epstein, Z. Zhong, and P. K. Gallagher, Synth. Met., 41, 765 (1991).
97.W.-S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. 1, 82, 2385 (1986).
98.M. Leclerc, J. Guay and L. H. Dao, Macromolecules, 22 (1989) 649.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top