跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 13:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳啟弘
研究生(外文):Chi-Hung Wu
論文名稱:二元金屬氧化物應用於電阻式記憶體之研究
論文名稱(外文):A study of binary metal oxide for resistance random access memory application
指導教授:劉國辰
指導教授(外文):Kou-Chen Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:107
中文關鍵詞:非揮發性記憶體電阻式記憶體二元金屬氧化物負電阻效應電阻轉換載子傳導途徑二氧化鈦氧化鉿氧化鎳
外文關鍵詞:Non-volatile memoryResistance Random Access MemoryBinary metal oxideNegative Differential Resistanceresistance switchingFilamentary ConductionsTiO2HfO2NiO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著資訊產業蓬勃發展,與資訊媒體的日益普及。消費性的數位家電產品、行動電話、數位相機、PDA 等攜帶性電子產品,在日常生活中已經是不可或缺的物品,其中的記憶體是重要零件之一。目前的非揮發性記憶體,以應用在作讀( Read )和寫( Write )動作時,將記憶陣列內所有元件資料,藉由電性同時清除的快閃式記憶體( Flash Memory )為主流。但是快閃記憶體由於操作電壓過大、操作速度慢、耐久力(endurance)不夠好,以及隨著元件縮小,必須面臨過薄的穿透閘極氧化層導致記憶時間不夠長等重要的問題。因此,下一個世代能夠取代快閃記憶體的非揮發性元件,以具有寫入操作電壓低、寫入抹除時間短、記憶時間長、非破壞性讀取、多狀態記憶、結構簡單及所需面積小優點的電阻式記憶體( Resistance Random Access Memory )為首要的選擇。
利用二元金屬氧化物( Binary metal oxide )當作電阻式記憶體的電阻層材料是因為其容易控制其組成比例,如此能符合現今的CMOS製程技術。然而,對於其電阻轉換的機制,目前提出有載子傳導途徑“ Filament ”的形成、缺陷能階在氧化層形成傳遞路徑或在電極與氧化層接面陰離子的移動所造成的載子傳導方式。
在論文中討論的以二元金屬氧化物當作電阻層,以金屬/絕緣層/金屬結構實現的電阻式記憶體。首先,以文獻探討的方式,綜合整理說明出現負電阻效應( Negative Differential Resistance ),以特殊的半穩定空間電荷分佈和絕緣層產生相變化或電子重新排列的觀點,解釋金屬氧化物的電阻轉換特性。在實驗中,利用二氧化鉿、二氧化鈦和氧化鎳當作電阻層,利用改變氧化物含氧量、改變氧化物製程溫度以及改變堆疊結構的方式,成功觀察到電阻轉換現象。
Non-volatile memory (NVM) represented as flash memory has already become an indispensable tool for modern portable and mobile electronic devices. Therefore they are quite reliant on the development of NVMs that have high speed, high unit cell density, low power consumption, high endurance, and low price. One of the candidates of next generation advanced NVMs is resistive random access memory (RRAM) that can replace flash memory. The simple structure consists of two terminal electrodes that sandwich a material normally resistive to change resistance. Applying a current or voltage pulse can, however, change the material’s resistance.
Electric-field controlled resistive memory switching phenomenon in metal oxide with metal-insulator-metal structure is possibility for non-volatile memory application. However, the switching mechanisms of RRAM are still unclear. To explain the memory switching in binary metal oxide material, various models have proposed such as filament conductions, charge trapping defects states inside the band gap, charge trap states at electrode/oxide interface and the change in the oxidation state of the cations, have been suggested.
In this thesis, the binary metal oxide for resistor layer was studied which were metal-insulator-metal structure. First, the way to probe into by paper review, the mechanism which gave rise to negative differential resistance fell into two parts: (Ⅰ) processes in which special semi- permanent space-charge distributions are set up. (Ⅱ) processes which involve a phase change or atomic rearrangement of host insulator. Further, the resistance switching behavior using voltage controlled in HfO2, TiO2 and NiO metal oxide material were reported. The metal oxide were deposited on Pt/Ti/SiO2 substrate. In the experiment, utilizing different oxygen content, various substrate temperature and change the stack structure in order to observe the resistance switching behavior successfully.
第一章 理論背景…………………………………………………..1
1-1 前言……………………………………………………………… 1
1-2 非揮發性記憶體元件發展……………………………………… 1
1-2-1 磁阻式記憶體(MRAM)………………………………… 2
1-2-2 相變化記憶體(OUM) ………………………………………3
1-2-3 鐵電記憶體(FeRAM) ……………………………………4
1-2-4 電阻式記憶體元件(RRAM)…………………………… 5
1-3 電阻式記憶體的發展…………………………………………… 5
1-3-1 鋯(鈦)酸鍶(SrZr(Ti)O3)材料…………………………… 5
1-3-2 巨磁阻材料(CMR,Colossal magnetoresistance)…………… 6
1-3-3 二元金屬氧化物…………… 8
1-3-3-1 二元金屬氧化物-氧化鎳( NiO )…………….................... 8
1-3-3-2二元金屬氧化物-二氧化鈦( TiO2 )……………................. 9
1-4 電阻式記憶體製程結構…………….................................. 9
1-5 電阻式記憶元件的工作原理.………………………10
第二章 文獻回顧探討…………………………………………………23
2-1 金屬氧化物特性 …………….......................23
2-2 負電阻效應( Differential negative resistance )…23
2-3 特殊的半穩定空間電荷分佈.........................25
2-3-1 Hickmott's Model.........................25
2-3-1-1 模型的建立............................26
2-3-1-2負電阻(Negative Differential Resistance )效應......26
2-3-2 Simmons & Verderber’s Model.............27
2-3-2-1 模型的建立…….........................28
2-3-2-2 負電阻(Negative Differential Resistance )效應......28
2-4 絕緣層產生相變化或電子重新排列.................................30
2-4-1 定義Filamentary Conductions..................30
2-4-2 Dearnaley’s Model.........................30
2-4-2-1 模型的建立…................ ............31
2-4-2-2 負電組( Negative Differential Resistance )效應…31
2-4-3 Rozenberg’s Model..........................33
2-4-3-1 模型的建立...............................33
2-4-3-2 負電組( Negative Differential Resistance )效應…33
2-4-4 南韓首爾大學 B. J. Choi 研究團隊..………………… 35
2-4-5 日本 FUJITSU Lab K. Kinoshita 研究團隊………………36
2-4-6 南韓三星 I. G. Beak and S. Seo 研究團隊……………… 36
2-5 二元氧化物應用於電阻式記憶體的開發…………………………38
第三章 實驗規劃...................................47
3-1 引言………………………………………………………………47
3-2 下電極的製作: Pt/Ti/SiO2/Si 基板…………………… 47
3-3 電阻層的製作………………………………………………… 47
3-3-1 氧化鈦(TiO2)………………………………………… 48
3-3-2氧化鉿(HfO2)…………………………………….49
3-3-3氧化鎳(NiO)……….……………………………………… 49
3-4 上電極的製作………………………………………..…………...50
3-5 電阻式記憶體( RRAM )電性量測………………………………...50
第四章 結果與討論………………………………………………. 54
4-1 二氧化鈦( TiO2)電壓與電流關係………………………. ………54
4-1-1 反應式濺鍍方式( Reactive sputtering )………………54
4-1-1-1 堆疊結構( Stack structure with one metal layer )……… 57
4-1-1-2 N2O 處理(N2O treatment )……………………………… 58
4-1-2 利用氧電漿氧化( Plasma Oxidation )……………………59
4-1-3 高溫氧化形成金屬氧化層( Metal Oxidation by furnace )..59
4-2二氧化鉿( HfO2)電壓與電流關係………………………………..60
4-2-1 反應式濺鍍方式( Reactive sputtering )…………………60
4-2-2 高溫氧化形成金屬氧化層( Metal Oxidation by furnace )...61
4-3 氧化鎳( NiO)電壓與電流關係…………………………………62
4-3-1反應式濺鍍方式( Reactive sputtering )……………………62
4-3-2高溫氧化形成金屬氧化層( Metal Oxidation by furnace )...63
4-4 探討其轉換特性及電阻改變率…………………………………63
4-4 探討其轉換特性及電阻改變率…………………………………63
第五章 結論…………………………………………………………103
參考文獻………………………………………………………………104
[1] Koichiro Honda “ Direct Observation of Potential Distribution across PbZrxTi1-xO3 Thin Films Using Off-Axis Electron Holography FUJITSU Sci. Tech. J., 38,1,p.64-68 2002;Son Hoang Le, Behzad Rejaei Salmassi, Johachim N.Burghartz, Pasqualina M. Sarro “ Characterization of ferroelectric thin films materials for FeRAM ”
[2] A. Beck, J.G. Bednorz, Ch. Gerber. C. Rosseel, and D.Widmer, “Reproducible switching effect in thin oxide films for memory application,” Appl. Phys. Lett. 77, 139~141, 2000.
[3] S. Q. Liu, N. J. Wu, and A. Ignatiev, “ Electric-pulse-induced reversible resistance change effect in magnetoresistive films ” Appl. Phys. Lett. 76, 19 (2000).
[4] S. Q. Liu, N. J. Wu, and A. Ignatiev, “A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films ” NASA Non-Volatile Memory Technology Symposium proceedings, p.18 2001
[5] W.W. Zhuang, W. Pan, B.D. Ulrich, J.J. Lee, L. Stecker, A. Burmaster, D.R. Evans, S.T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “ Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM),” in IEDM Tech. Dig., 2002, pp. 193~196.
[6] I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, J.C. Park, S.O. Park, H. S. Kim, I.K. Yoo, U.I. Chung, and J.T. Moon, “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses,” in IEDM Tech. Dig., 2004.
[7] B. J. Choi, D. S. Jeong, S. K. Kim and K. Szot “ Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition ” Journal of Applied Physics 98 033715 2005
[8] T. W. Hickmott “ Electron Emission, Electroluminescence, and Voltage-Controlled Negative Resistance in Al-Al2O3-Au Diodes ” Journal of Applied Physics, Vol. 36 pp.1885-1896.
[9] J. G. Simmons, R. R. Verderber “ New conduction and Reversible Memory Phenomena in thin Insulating films ” Proceedings of the Royal Society of London. Series A, Mathermatical and Physical Scieces, Vol. 301, No. 1464 (Oct. 3, 1967), 77-102
[10] J. F. Gibbons and W. E. Beadle, Solid-State Electron. 7, 785 (1964)
[11] G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)
[12] T. W. Hickmott “ Potential Distribution and Negative Resistance in Thin Oxide Films ” Journal of Applied Physics, Vol. 35 pp.2679-2689. 1964
[13] Brady, C. W. J. Phys. Chem. 63 P.119 1959、Cremer. Z. Electrchem 62, P.939、Hass. G. Am. Ceram Soc (33) P.353.
[14] G. Dearnaley “ Electronic conduction through thin unsaturated oxide layers ” Physics Letters Vol.25 (10) 1967
[15] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez “ Nonvolatile Memory with Multilevel Switching : A basic Model ” Physical Review Letters Vol.92 (17) 2004
[16] B. J. Choi, D. S. Jeong, S. K. Kim and K. Szot “ Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition ” Journal of Applied Physics 98 033715 2005
[17] K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 075508 _2002_.
[18] K. Kinoshita, T. Tamura, “ New Model propose for switching Mechanism of RRAM ”IEEE 2006.
[19] D. C. Kim, M. J. Lee and I. G. Beak “ Improvement of resistive memory switching in NiO using IrO2 ” Applied Physics Letters 88, 232106 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top