跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高明輝
研究生(外文):Ming-Hui,Kao
論文名稱:角膜癒傷過程中上皮細胞分化相關標記表現之變化
論文名稱(外文):Expression of Keratinocyte Differentiation Markers in Rabbit Cornea during Wound Repair
指導教授:陳君侃陳君侃引用關係
指導教授(外文):Jan-Kan,Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:59
中文關鍵詞:角膜幹細胞受創
外文關鍵詞:CorneaStem cellWound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
角膜為眼球表面上皮細胞所構成的無血管透明組織,由於角膜位於眼球的最外層,故角膜也扮演著防止外來之物理、化學或生物性傷害的角色。角膜上皮細胞是由角膜與結膜銜接處之輪部上皮組織基底層的幹細胞所分裂分化而來。隨著上皮細胞的汰舊換新,輪部基底層的角膜上皮幹細胞會被活化,藉由細胞增生分裂以維持角膜上皮的組織恆定性。
過去研究發現,在正常的人類角膜中,p63轉錄因子只在具備高分裂潛力的輪部基底層上皮細胞細胞核中表現,認為p63的表現為角膜上皮幹細胞的指標。然而卻有許多研究與眼科的臨床證據顯示,角膜上皮組織中亦發現p63的表現,此結果與前者理論相互矛盾。
角膜上皮組織汰舊換新或組織受創時,輪部上皮基底層的角膜上皮幹細胞會開始增生新的角膜上皮細胞並往角膜移動。我們的實驗發現角膜上皮於修復初期,新生的角膜上皮組織亦有p63的表現,與過去的理論不符。另外經由觀察同時期之角膜分化相關蛋白Keratin 3和 Keratin 14,發現修復初期的角膜上皮組織亦有Keratin 14的表現,與正常角膜上皮組織不同;而隨著角膜上皮組織修復完畢,Keratin 14的表現也漸漸消失,取而代之的則是Keratin 3的表現。說明角膜受創癒合後,新生的角膜上皮細胞會漸漸走向分化,成為成熟的角膜上皮細胞。
角膜組織ex vivo培養的實驗發現,修復初期的中央角膜上皮組織可以在人類羊膜上增生,與正常中央角膜上皮組織不同。配合免疫組織染色之結果,我們認為p63勢必參與修復初期角膜上皮細胞的分裂或分化。
Limbal epithelial stem cells (LSC) are the progenitors of corneal epithelium and are known to locate in the basal layer of the limbal epithelium. During corneal wound repair, limbal epithelial stem cells are stimulated to proliferate and generate new epithelial cells to fill the wound surface. Corneal epithelium is strongly positive with Keratin 3, a marker of the mature keratinocyte. In contrast, limbal epithelial basal cells are positive with p63, Keratin 14 and/or PCNA, the markers of either cell undifferentiation or proliferation. Here we show that in the epithelium of wound-healing cornea, the basal cells are positive with p63, Keratin 14 and PCNA, and are negative with Keratin 3, characteristics of that of the limbal basal cells. In contrast, Keratin 3 is expressed in cells located from suprabasal to superficial layers. Interestingly, immuno- fluorescent staining of serial sections shows that all p63 positive cells are also Keratin 14 and PCNA positive. Similar results were obtained with ex vivo cultured limbus. In vivo wounded corneas were allowed to undergo repair to complete the reepithlization. On day 7th post-wounding, central corneas were excised and explanted on AM to evaluate their growth potential. Central corneal epithelium taken from day 7th post-wounding grew vigorously to form an epithelial outgrowth with a rate that was faster than unwounded limbal tissue. In contrast, central corneas taken from day 30th post-wounding were unable to grow and no epithelial outgrowth was formed. The growth potential of the wound-repaired central cornea is positively correlated with the expressions of p63, Keratin 14 and PCNA. Our results suggest that the expression of p63 is an important indicator for the proliferation of corneal epithelial cells.
目次
中文摘要………………………………………………………………1
英文摘要………………………………………………………………3
1.序論…………………………………………………………………5
1-1.幹細胞……………………………………………………………5
1-2.成體幹細胞的存在………………………………………………5
1-3.成體幹細胞的特性………………………………………………6
1-4.成體幹細胞的鑑定………………………………………………6
1-5.角膜上皮組織……………………………………………………7
1-6.角膜上皮幹細胞…………………………………………………8
1-7.p63與上皮細胞…………………………………………………9
1-8.角膜上皮幹細胞的鑑定…………………………………………11
1-9.上皮組織受創修復………………………………………………11
1-10.角膜上皮受創修復與細胞激素的關係……………………….12
1-11.角膜上皮受創修復與p63的關係………………………………13
2.研究目的……………………………………………………………15
3.實驗材料與方法…………………………………………………16
3-1.實驗材料………………………………………………………16
3-1-1.實驗動物……………………………………………………16
3-1-2.人類羊膜製備………………………………………………16
3-1-3.實驗試劑……………………………………………………17
3-1-4.實驗儀器……………………………………………………18
3-2實驗方法…………………………………………………………19
3-2-1.全角膜破皮受創……………………………………………19
3-2-2.角膜受創癒合………………………………………………19
3-2-3.角膜組織培養………………………………………………20
3-2-4.角膜組織染色與影像呈現…………………………………21
3-2-5.Real-time quantitative reverse transcription PCR …………22
4.結果…………………………………………………………………24
4-1-1.輪部內的角膜上皮幹細胞並非平均分配……………………24
4-1-2.角膜破皮受創後,輪部產生新生細胞來修復角膜…………25
4-1-3.修復中的角膜組織具增生能力………………………………25
4-2.受創復原初期角膜上皮細胞中Keratin 3, Keratin 14及p63之表
現…………………………………………………………………26
4-3.以Real-time Q-PCR辨識受創角膜上皮的p63 ……………29
5.討論…………………………………………………………………30
6.Reference List…………………………………………………33

圖目錄
Fig.1…………………………………………………………………… 42
Fig.2.……………………………………………………………………43
Fig.3.……………………………………………………………………44
Fig.4.……………………………………………………………………45
Fig.5.……………………………………………………………………46
Fig.6.……………………………………………………………………47
Fig.7.……………………………………………………………………48
Fig.8…………………………………………………………………… 50
Fig.9.……………………………………………………………………51
Fig.10.…………………………..………………………………………52
Fig.11.…………………………..………………………………………53
Fig.12.…………………………..………………………………………54
Fig.13.…………………………..………………………………………55
Fig.14.…………………………..………………………………………56
Fig.15.…………………………..………………………………………57
Fig.16.…………………………..………………………………………58
Fig.17.…………………………..………………………………………59
Fig.18.…………………………..………………………………………60
Fig.19.…………………………..………………………………………61
Fig.20.…………………………..………………………………………62
Table 1 .…………….…………..………………………………………63
Fig.21.…………………………..………………………………………64
1. Steindler, D. A. Redefining cellular phenotypy based on embryonic, adult, and cancer stem cell biology. Brain Pathol. 16, 169-180 (2006).
2. Gangemi, R. M., Perera, M. & Corte, G. Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J. Neurochem. 89, 286-306 (2004).
3. Willenbring, H. & Grompe, M. Embryonic versus adult stem cell pluripotency: in liver only fusion matters. J. Assist. Reprod. Genet. 20, 393-394 (2003).
4. Henningson, C. T., Jr., Stanislaus, M. A. & Gewirtz, A. M. 28. Embryonic and adult stem cell therapy. J. Allergy Clin. Immunol. 111, S745-S753 (2003).
5. Sahai, J. & Louie, S. G. Overview of the immune and hematopoietic systems. Am. J. Hosp. Pharm. 50, S4-S9 (1993).
6. Wulf, G. G., Jackson, K. A. & Goodell, M. A. Somatic stem cell plasticity: current evidence and emerging concepts. Exp. Hematol. 29, 1361-1370 (2001).
7. Mayani, H. A glance into somatic stem cell biology: basic principles, new concepts, and clinical relevance. Arch. Med. Res. 34, 3-15 (2003).
8. Youn, S. W. et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J. Dermatol. Sci. 35, 113-123 (2004).
9. Chunmeng, S. & Tianmin, C. Skin: a promising reservoir for adult stem cell populations. Med. Hypotheses 62, 683-688 (2004).
10. Guasch, G. & Blanpain, C. [Defining the epithelial stem cell niche in skin]. Med. Sci. (Paris) 20, 265-267 (2004).
11. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359-363 (2004).
12. Canninga-van Dijk, M. R., Sanders, C. J., Verdonck, L. F., Fijnheer, R. & van den Tweel, J. G. Differential diagnosis of skin lesions after allogeneic haematopoietic stem cell transplantation. Histopathology 42, 313-330 (2003).
13. Fu, X. B. et al. [Epidermal growth factor stimulates tissue repair in skin through skin stem cell activation]. Zhongguo Xiu. Fu Chong. Jian. Wai Ke. Za Zhi. 16, 31-35 (2002).
14. Imamura, T. et al. Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo. Tissue Eng 10, 1716-1724 (2004).
15. Daniels, J. T., Dart, J. K., Tuft, S. J. & Khaw, P. T. Corneal stem cells in review. Wound. Repair Regen. 9, 483-494 (2001).
16. Lavker, R. M. & Sun, T. T. Epidermal stem cells: properties, markers, and location. Proc. Natl. Acad. Sci. U. S. A 97, 13473-13475 (2000).
17. Lavker, R. M. & Sun, T. T. Epidermal stem cells. J. Invest Dermatol. 81, 121s-127s (1983).
18. Lehrer, M. S., Sun, T. T. & Lavker, R. M. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J. Cell Sci. 111 ( Pt 19), 2867-2875 (1998).
19. Roop, D. R. Regulation of keratin gene expression during differentiation of epidermal and vaginal epithelial cells. Curr. Top. Dev. Biol. 22, 195-207 (1987).
20. Fuchs, E. Epidermal differentiation and keratin gene expression. Princess Takamatsu Symp. 24, 290-302 (1994).
21. O'Guin, W. M., Galvin, S., Schermer, A. & Sun, T. T. Patterns of keratin expression define distinct pathways of epithelial development and differentiation. Curr. Top. Dev. Biol. 22, 97-125 (1987).
22. Rodrigues, M., Ben-Zvi, A., Krachmer, J., Schermer, A. & Sun, T. T. Suprabasal expression of a 64-kilodalton keratin (no. 3) in developing human corneal epithelium. Differentiation 34, 60-67 (1987).
23. Fuchs, E. & Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19, 1033-1042 (1980).
24. Nelson, W. G. & Sun, T. T. The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J. Cell Biol. 97, 244-251 (1983).
25. Michel, M. et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J. Cell Sci. 109 ( Pt 5), 1017-1028 (1996).
26. Fradette, J., Germain, L., Seshaiah, P. & Coulombe, P. A. The type I keratin 19 possesses distinct and context-dependent assembly properties. J. Biol. Chem. 273, 35176-35184 (1998).
27. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. U. S. A 84, 2302-2306 (1987).
28. Rodrigues, M., Ben-Zvi, A., Krachmer, J., Schermer, A. & Sun, T. T. Suprabasal expression of a 64-kilodalton keratin (no. 3) in developing human corneal epithelium. Differentiation 34, 60-67 (1987).
29.Ebato, B., Friend, J. & Thoft, R. A. Comparison of limbal and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol. Vis. Sci. 29, 1533-1537 (1988).
30. Pellegrini, G. et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J. Cell Biol. 145, 769-782 (1999).
31. Barbieri, C. E. & Pietenpol, J. A. p63 and epithelial biology. Exp. Cell Res. 312, 695-706 (2006).
32. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708-713 (1999).
33. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714-718 (1999).
34. Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305-316 (1998).
35. De, L., V et al. p63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem. Biophys. Res. Commun. 273, 342-346 (2000).
36. Levrero, M. et al. Structure, function and regulation of p63 and p73. Cell Death. Differ. 6, 1146-1153 (1999).
37. Little, N. A. & Jochemsen, A. G. p63. Int. J. Biochem. Cell Biol. 34, 6-9 (2002).
38. Levrero, M. et al. Structure, function and regulation of p63 and p73. Cell Death. Differ. 6, 1146-1153 (1999).
39. Crook, T., Nicholls, J. M., Brooks, L., O'Nions, J. & Allday, M. J. High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 19, 3439-3444 (2000).
40. Wu, G. et al. DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res. 65, 758-766 (2005).
41. Ihrie, R. A. & Attardi, L. D. A new Perp in the lineup: linking p63 and desmosomal adhesion. Cell Cycle 4, 873-876 (2005).
42. Ihrie, R. A. et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell 120, 843-856 (2005).
43. Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20, 1028-1042 (2006).
44. Hayashi, T. et al. Expression of the p63 and Notch signaling systems in rat testes during postnatal development: comparison with their expression levels in the epididymis and vas deferens. J. Androl 25, 692-698 (2004).
45. Westfall, M. D., Mays, D. J., Sniezek, J. C. & Pietenpol, J. A. The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol. Cell Biol. 23, 2264-2276 (2003).
46. Di Como, C. J. et al. p63 expression profiles in human normal and tumor tissues. Clin. Cancer Res. 8, 494-501 (2002).
47. Foschini, M. P. et al. Pattern of p63 expression in squamous cell carcinoma of the oral cavity. Virchows Arch. 444, 332-339 (2004).
48. Mills, A. A. p63: oncogene or tumor suppressor? Curr. Opin. Genet. Dev. 16, 38-44 (2006).
49. Koster, M. I. & Roop, D. R. The role of p63 in development and differentiation of the epidermis. J. Dermatol. Sci. 34, 3-9 (2004).
50. Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J. & Roop, D. R. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev. 18, 126-131 (2004).
51. Di, I. E. et al. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc. Natl. Acad. Sci. U. S. A 102, 9523-9528 (2005).
52. Bamberger, C., Hafner, A., Schmale, H. & Werner, S. Expression of different p63 variants in healing skin wounds suggests a role of p63 in reepithelialization and muscle repair. Wound. Repair Regen. 13, 41-50 (2005).
53. Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell 88, 287-298 (1997).
54. Pellegrini, G. et al. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. U. S. A 98, 3156-3161 (2001).
55. Dua, H. S., Joseph, A., Shanmuganathan, V. A. & Jones, R. E. Stem cell differentiation and the effects of deficiency. Eye 17, 877-885 (2003).
56. Moore, J. E., McMullen, C. B., Mahon, G. & Adamis, A. P. The corneal epithelial stem cell. DNA Cell Biol. 21, 443-451 (2002).
57. Hsueh, Y. J., Wang, D. Y., Cheng, C. C. & Chen, J. K. Age-related expressions of p63 and other keratinocyte stem cell markers in rat cornea. J. Biomed. Sci. 11, 641-651 (2004).
58. de Paiva, C. S., Chen, Z., Corrales, R. M., Pflugfelder, S. C. & Li, D. Q. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23, 63-73 (2005).
59. Budak, M. T. et al. Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J. Cell Sci. 118, 1715-1724 (2005).
60. Watanabe, K. et al. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett. 565, 6-10 (2004).
61. Chee, K. Y., Kicic, A. & Wiffen, S. J. Limbal stem cells: the search for a marker. Clin. Experiment. Ophthalmol. 34, 64-73 (2006).
62. Lavker, R. M., Tseng, S. C. & Sun, T. T. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp. Eye Res. 78, 433-446 (2004).
63. http://www.optometry.co.uk/ Corneal wound healing:a review. Optomerty Today 28-32 (1999).
64. Dupps, W. J., Jr. & Wilson, S. E. Biomechanics and wound healing in the cornea. Exp. Eye Res. (2006).
65. Jacinto, A., Martinez-Arias, A. & Martin, P. Mechanisms of epithelial fusion and repair. Nat. Cell Biol. 3, E117-E123 (2001).
66. Lu, L., Reinach, P. S. & Kao, W. W. Corneal epithelial wound healing. Exp. Biol. Med. (Maywood. ) 226, 653-664 (2001).
67. Beaubien, J., Boisjoly, H. M., Gagnon, P. & Guidoin, R. Mechanical properties of the rabbit cornea during wound healing after treatment with epidermal growth factor. Can. J. Ophthalmol. 29, 61-65 (1994).
68. Mazzalupo, S., Wawersik, M. J. & Coulombe, P. A. An ex vivo assay to assess the potential of skin keratinocytes for wound epithelialization. J. Invest Dermatol. 118, 866-870 (2002).
69. Kruse, F. E. & Volcker, H. E. Stem cells, wound healing, growth factors, and angiogenesis in the cornea. Curr. Opin. Ophthalmol. 8, 46-54 (1997).
70. Imanishi, J. et al. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog. Retin. Eye Res. 19, 113-129 (2000).
71. Martin R., Alexander K. & Norbert S. The Cornea Surface and Wound Healing. Prog Ret Eye Res. 16, 183-225 (1997).
72. Wang, D. Y. et al. Regulation of limbal keratinocyte proliferation and differentiation by TAp63 and DeltaNp63 transcription factors. Invest Ophthalmol. Vis. Sci. 46, 3102-3108 (2005).
73. Wang, D. Y., Hsueh, Y. J., Yang, V. C. & Chen, J. K. Propagation and phenotypic preservation of rabbit limbal epithelial cells on amniotic membrane. Invest Ophthalmol. Vis. Sci. 44, 4698-4704 (2003).
74. Tsai, R. J., Li, L. M. & Chen, J. K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 343, 86-93 (2000).
75. Joseph, A., Powell-Richards, A. O., Shanmuganathan, V. A. & Dua, H. S. Epithelial cell characteristics of cultured human limbal explants. Br. J. Ophthalmol. 88, 393-398 (2004).
76. Kawasaki, S., Tanioka, H., Yamasaki, K., Connon, C. J. & Kinoshita, S. Expression and tissue distribution of p63 isoforms in human ocular surface epithelia. Exp. Eye Res. 82, 293-299 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 韓善民(1998):資訊教育基礎建設--加速篇。資訊與教育,68,14-16。
2. 鄭麗雪(1993):台北市資訊教育之現況與展望。資訊與教育,36,17-21
3. 鄭東瀛(1993):台北市國民小學電腦應用教學實況。資訊與教育,38,51-55
4. 鄭麗雪(1993):台北市資訊教育之現況與展望。資訊與教育,36,17-21
5. 廖清森(1993):高雄市國民小學資訊教育實施現況。資訊與教育,38,49-50
6. 葉燈超(2003):從教師資訊能力談「資訊科技融入學科教學」之困境因應之道~以內湖高工為例。資訊與教育,95,69-74
7. 溫明正(2000):E世代資訊變革對校園生態的影響。資訊與教育,79,20-30。
8. 黃銘宗(2004):嘉義縣資訊教育發展現況與展望 。教師之友,45(5),36-40。
9. 黃淑娟(1993):高雄市資訊教育之現況與展望。資訊與教育,36,22-24
10. 黃韻寧(1993):台灣省國民小學電腦應用教學實況。資訊與教育,38,46-48。
11. 黃淑娟(1993):高雄市資訊教育之現況與展望。資訊與教育,36,22-24
12. 陳美紀(1996):中小學教師電腦能力芻議。資訊與教育,52 期,23-25 頁。
13. 陳仲彥(民85):資訊素養與圖書館利用教育。社教雙月刊,73,19-22。
14. 陳立祥(1999):我國資訊教育推動現況與展望。竹縣文教,19,5-10。
15. 凌昌武(1998):邁向2000年之資訊教育--談宜蘭經驗。研習資訊,15(2),22-32。