跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥妤
研究生(外文):Yen-yu Chen
論文名稱:priA,B,C與rep基因參與在大腸桿菌不連續性DNA複製模式之探討
論文名稱(外文):Involvement of the priA, B, C and rep genes in the apparent discontinous DNA replication in Escherichia coli
指導教授:王子堅
指導教授(外文):Tzu-Chien V. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:54
外文關鍵詞:discontinuous DNA synthesisprimosomepriAEscherichia coli
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
DNA的複製為任何生命體之中樞基本現象,在大腸桿菌中,DNA的複製有一個特定起始位置,命名為oriC,從此處解開雙股螺旋,往兩個相反方向同時進行複製。但是DNA的複製究竟以何種模式進行,目前仍無定論,一般研究根據in vitro data指出DNA的複製為半不連續的模式,然而大部分in vivo data則指出大腸桿菌的DNA合成在兩股皆以不連續性的方式進行。根據本實驗室先前的研究,我們對野生種大腸桿菌在in vivo進行短時間放射性標定觀察其DNA合成模式,顯示大腸桿菌的複製是以不連續性方式。若DNA在前進股的合成是不連續的,則需要有RNA引子的重複合成,因此,領導股勢必擁有一個專門的引子合成複合體,若將可能參與在領導股引子合成複合體之基因突變,是否可使領導股的DNA複製由不連續性轉變為連續性?在本論文,我們測試幾個候選基因(priA, priB, priC及rep)在領導股合成中扮演的角色,藉由放射性短時間標定法分析野生株和突變株複製模式的差異,在短時間標定下,大部分新合成DNA是小於5 kb的,但priA2與priA300其新合成DNA片段卻有往大於5 kb移動的趨勢。為減少在野生種菌株中短時間標定而產生技術上誤差,將priA2與rep等基因送入lig-7及polA4113菌株中進行分析,我們觀察到將priC送入lig-7及polA4113菌株中,並不影響新合成DNA大小分佈,然而在priA2 lig-7, priA2 polA4113或rep polA4113等菌株中,新合成的DNA分子有往大於5 kb移動趨勢,我們的結果顯示著priA或甚至rep可能在大腸桿菌不連續DNA複製模式中扮演重要角色。
Replication of DNA is fundamental to all actively growing cells. In Escherichia coli, DNA replication is initiated at specific site on the genomic DNA, termed oriC, and then proceeds bidirectionally to the terminus. The question of whether discontinuous DNA synthesis operates in only the lagging strand or in both strands at a replication fork remains unresolved. Data from most in vivo studies are clearly in favor of a discontinuous DNA replication model, and the DnaG primase binding sites are known to be abundant on both strands. For discontinuous synthesis to occur in the leading-strand, one would predict that RNA primers are synthesized in the leading-strand, and therefore, there should be a primosome complex for the leading-strand. We hypothesize that inactivation of genes that function only in the leading-strand primosome shall convert the discontinuous synthesis to continuous mode. In this work, we examined several candidate genes ( priA, B, C and rep ) for their possible role in the leading strand DNA synthesis. The size distribution of nascent DNA synthesized from pulse-labeling with 3H-thimidine was analyzed in wild-type, priA, B, C and rep cells. The majority of short pulse-labeled (10 second) DNAs from the wild-type cells are smaller than 5kb, which is consistent with the previous findings by Okazaki et al. A greater percentage of short pulse-labeled DNAs from the priA2,and priA300, but not from priB302, priC303 or rep, mutants was partitioned into high Mr. (eg, greater than 5kb) forms. To minimize the technical problems of analyzing the small amount of DNA synthesized during the very short pulse-labeling, the effects of these mutations on the nascent DNAs synthesized in a lig-7 or polA4113 strain were examined. Introduction of priC303 into a lig-7 or polA4113 strain did not appear to alter the size distribution of nascent DNA synthesized in these mutants, i.e., the bulk of nascent DNA was all Okazaki fragments. However, the nascent DNA synthesized in the priA lig7, priA2 polA4113, or rep polA4113 strains appeared to contain a greater fraction of DNA in high Mr. (eg. greater than 5 kb). Our results indicate that the priA and possibly rep genes may play an important role in the apparent discontinuous DNA replication in E. coli.
指導教授推薦書…………………………………………………………
口試委員會審定書………………………………………………………
長庚大學授權書…………………………………………………………..iii
誌謝………………………………………………………………………..iv
目錄……………………………………………………………………….. v
圖表目錄………………………………………………………………….. vi
中文摘要…………………………………………………………………..vii
英文摘要…………………………………………………………………..ix
第一章 前言…………………………………………………………….. 1
DNA複製模式………………………………………………….. 1
引子合成複合體在複製過程中扮演的角色………………….. 4
參與領導股primosome組成之鑑定………………………….. 7
研究目的……………………………………………………….. 8
第二章 材料與方法…………………………………………………….. 10
第三章 實驗結果……………………………………………………….. 18
1 在野生種大腸桿菌中,探討priA,B,C與rep之單一突變對新合成DNA大小片段影 響…………………………………………………………………………… 18
2 在lig7突變之大腸桿菌中,探討priA,B,C與rep之單一突變對新合成DNA大小片段影響……………………………………………………………………… 19
3 在polA4113突變之大腸桿菌中,探討priA,B,C與rep之單一突變對新合成DNA大小片段影響………………………………………………………………… 21
第四章 討論……………………………………………………………… 23
參考文獻…………………………………………………………………… 49
附錄………………………………………………………………………… 54
Reference List

Allen,G.C., Jr. and Kornberg,A. (1991). The priB gene encoding the primosomal replication n protein of Escherichia coli. J. Biol. Chem. 266, 11610-11613.

Blattner,F.R., Plunkett,G., III, Bloch,C.A., Perna,N.T., Burland,V., Riley,M., Collado-Vides,J., Glasner,J.D., Rode,C.K., Mayhew,G.F., Gregor,J., Davis,N.W., Kirkpatrick,H.A., Goeden,M.A., Rose,D.J., Mau,B., and Shao,Y. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1474.

Herrmann,R., Huf,J., and Bonhoeffer,F. (1972). Cross hybridization and rate of chain elongation of the two classes of DNA intermediates. Nat. New Biol. 240, 235-237.

Jaktaji,R.P. and Lloyd,R.G. (2003). PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells. Mol. Microbiol. 47, 1091-1100.

Konrad,E.B. and Lehman,I.R. (1974). A conditional lethal mutant of Escherichia coli K12 defective in the 5' leads to 3' exonuclease associated with DNA polymerase I. Proc. Natl. Acad. Sci. U. S. A 71, 2048-2051.

Kurosawa,Y., Ogawa,T., Hirose,S., Okazaki,T., and Okazaki,R. (1975). Mechanism of DNA chain growth. XV. RNA-linked nascent DNA pieces in Escherichia coli strains assayed with spleen exonuclease. J. Mol. Biol. 96, 653-664.

Lane,H.E. and Denhardt,D.T. (1974). The rep mutation. III. Altered structure of the replicating Escherichia coli chromosome. J. Bacteriol. 120, 805-814.

Lane,H.E. and Denhardt,D.T. (1975). The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J. Mol. Biol. 97, 99-112.

Liu,J. and Marians,K.J. (1999). PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem. 274, 25033-25041.

Liu,J., Nurse,P., and Marians,K.J. (1996). The ordered assembly of the phiX174-type primosome. III. PriB facilitates complex formation between PriA and DnaT. J. Biol. Chem. 271, 15656-15661.

Liu,J.H., Chang,T.W., Huang,C.Y., Chen,S.U., Wu,H.N., Chang,M.C., and Hsiao,C.D. (2004). Crystal structure of PriB, a primosomal DNA replication protein of Escherichia coli. J. Biol. Chem. 279, 50465-50471.

Lohman,T.M. and Bjornson,K.P. (1996). Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169-214.

Marians,K.J. (2000). PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25, 185-189.

Marians,K.J. (1992). Prokaryotic DNA replication. Annu. Rev. Biochem. 61, 673-719.

Miller,J.H., Shinaberger,J.H., and Gardner,P.W. (1972). Experience with a new plate type dialyzer. Proc. Clin. Dial. Transplant. Forum 2, 50-51.

Ng,J.Y. and Marians,K.J. (1996). The ordered assembly of the phiX174-type primosome. II. Preservation of primosome composition from assembly through replication. J. Biol. Chem. 271, 15649-15655.

Ogawa,T., Hirose,S., Okazaki,T., and Okazaki,R. (1977). Mechanism of DNA chain growth XVI. Analyses of RNA-linked DNA pieces in Escherichia coli with polynucleotide kinase. J. Mol. Biol. 112, 121-140.

Ogawa,T. and Okazaki,T. (1980). Discontinuous DNA replication. Annu. Rev. Biochem. 49, 421-457.

Okazaki,R., Arisawa,M., and Sugino,A. (1971). Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc. Natl. Acad. Sci. U. S. A 68, 2954-2957.

Okazaki,R., Hirose,S., Okazaki,T., Ogawa,T., and Kurosawa,Y. (1975). Assay of RNA-linked nascent DNA pieces with polynucleotide kinase. Biochem. Biophys. Res. Commun. 62, 1018-1024.

Okazaki,R., Okazaki,T., Sakabe,K., Sugimoto,K., and Sugino,A. (1968). Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc. Natl. Acad. Sci. U. S. A 59, 598-605.

Olivera,B.M. (1978). DNA intermediates at the Escherichia coli replication fork: effect of dUTP. Proc. Natl. Acad. Sci. U. S. A 75, 238-242.

Olivera,B.M. and Bonhoeffer,F. (1972). Discontinuous DNA replication in vitro. I. Two distinct size classes of intermediates. Nat. New Biol. 240, 233-235.

Olivera,R.M. and Bonhoeffer,E. (1974). Replication of Escherichia coli requires DNA polymerase I. Nature 250, 513-514.

Sancar,A. and Sancar,G.B. (1988). DNA repair enzymes. Annu. Rev. Biochem. 57, 29-67.

Sandler,S.J. (2000). Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 155, 487-497.

Sandler,S.J., Marians,K.J., Zavitz,K.H., Coutu,J., Parent,M.A., and Clark,A.J. (1999). dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. Mol. Microbiol. 34, 91-101.

Sandler,S.J., Samra,H.S., and Clark,A.J. (1996). Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143, 5-13.

Sandler,S.J. and Marians,K.J. (2000). Role of PriA in Replication Fork Reactivation in Escherichia coli. J. Bacteriol. 182, 9-13.

Sclafani,R.A. and Wechsler,J.A. (1981). DNA replication intermediates synthesized by lysates of dnaB, dnaG and dnaB dnaG mutants in vitro. Mol. Gen. Genet. 182, 95-98.

Seigneur,M., Bidnenko,V., Ehrlich,S.D., and Michel,B. (1998). RuvAB acts at arrested replication forks. Cell 95, 419-430.

Sugimoto,K., Okazaki,T., and Okazaki,R. (1968). Mechanism of DNA chain growth, II. Accumulation of newly synthesized short chains in E. coli infected with ligase-defective T4 phages. Proc. Natl. Acad. Sci. U. S. A 60, 1356-1362.

Tang,M.S. and Smith,K.C. (1981). The effects of lexA101, recB21, recF143 and uvrD3 mutations on liquid-holding recovery in ultraviolet-irradiated Escherichia coli K12 recA56. Mutat. Res. 80, 15-25.

Tye,B.K., Chien,J., Lehman,I.R., Duncan,B.K., and Warner,H.R. (1978). Uracil incorporation: a source of pulse-labeled DNA fragments in the replication of the Escherichia coli chromosome. Proc. Natl. Acad. Sci. U. S. A 75, 233-237.

Uyemura,D., Eichler,D.C., and Lehman,I.R. (1976). Biochemical characterization of mutant forms of DNA polymerase I from Escherichia coli. II. The polAex1 mutation. J. Biol. Chem. 251, 4085-4089.

Wang,T.C., Chang,H.Y., and Hung,J.L. (1993). Cosuppression of recF, recR and recO mutations by mutant recA alleles in Escherichia coli cells. Mutat. Res. 294, 157-166.

Wang,T.C. and Chen,S.H. (1994). Okazaki DNA fragments contain equal amounts of lagging-strand and leading-strand sequences. Biochem. Biophys. Res. Commun. 198, 844-849.

Wang,T.C. and Chen,S.H. (1992). Similar-sized daughter-strand gaps are produced in the leading and lagging strands of DNA in UV-irradiated E. coli uvrA cells. Biochem. Biophys. Res. Commun. 184, 1496-1503.

Wang,T.C. and Smith,K.C. (1982). Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12. J. Bacteriol. 151, 186-192.

Wang,T.C. and Smith,K.C. (1989). Discontinuous DNA replication in a lig-7 strain of Escherichia coli is not the result of mismatch repair, nucleotide-excision repair, or the base-excision repair of DNA uracil. Biochem. Biophys. Res. Commun. 165, 685-688.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top