跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何佳紋
研究生(外文):Chia wun Ho
論文名稱:利用質譜技術來決定P-STM抗體可以辨laminsA及C在細胞分裂時期的磷酸化位置
論文名稱(外文):Determination of the P-STM antibody-recognizable phosphorylation sites on lamins A and C in mitotic HeLa cells by mass spectrometry
指導教授:余兆松
指導教授(外文):Jau song Yu
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:56
中文關鍵詞:質譜磷酸化細胞分裂
外文關鍵詞:lamins A/CP-STMMassSILACCDC2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
P-STM抗體是我們實驗室針對PAK2的自我磷酸化作用點,利用此抗原序列SKRSpTMVGTPY,製造出一個可辨認專一性磷酸化抗體 (Yu et al., Biochem. J. 334, 121-131, 1998; Tsai et al., J. Cell. Biochem. 94, 967–981, 2005)。它不僅可以辨認活化態/自我磷酸化的的PAK2,還可以對於處於分裂週期之A431與HeLa細胞蛋白萃取液中許多磷酸化蛋白都有辨識能力,而其中兩個磷酸化蛋白分別被鑑定為lamin A及lamin C。Lamins A/C已知在細胞分裂時期會被p34cdc2磷酸化。我們發現在試管中p34cdc2可對經由免疫沈澱分離的lamins A/C進行磷酸化作用,而且此一磷酸化作用可以產生P-STM抗體可辨認的磷酸化表位(epitope),所以我們推測P-STM抗體辨認Nocodazole處理過後(處於分裂週期)的lamins A/C磷酸化的表位可能是被p34cdc2作用的。我們實驗的目標是希望可以找出lamins A/C在細胞分裂時期被P-STM辨認的磷酸化表位及定量在不同時期lamins A/C磷酸化位點之磷酸化強度。利用質譜學及分子生物學的方法,我們成功的找到及定量lamins A/C在細胞分裂時期被P-STM辨認的磷酸化位置。實驗結果發現,在試管中p34cdc2是透過對lamin C之Thr-19磷酸化作用,而產生P-STM抗體的磷酸化表位。而進一步利用「穩定同位素標定胺基酸細胞培養」(Stable Isotope Labeling with Amino acids in Cell culture, SILAC)的方法也可以看出lamin C之12SGAQASS19TPLSPT25R片段訊號在有無處理nocodazole的細胞中有明顯的差異。藉由瞭解lamins A/C被P-STM辨認的磷酸化位置,我們希望可以利用此一線索找出更多有關細胞週期調節的磷酸化蛋白分子及其磷酸化位置。
P-STM, a phospho-epitope-specific antibody generated against the autophosphorylation/regulatory site of p21-activated kinase (PAK2) (antigen sequence: SKRSpTMVGTPY), not only recognizes the autophosphorylated/ activated PAK2 but also many phosphoproteins including lamins A/C in mitotic HeLa and A431 cells (Yu et al., 1998; Tsai et al., 2005). Lamins A/C are known to be phosphorylated by p34cdc2 kinase in mitotic cells. The P-STM recognizable epitopes on lamins A/C may serve as good targets to monitor lamins A/C phosphorylation levels during cell cycle. Lamins A/C immunoprecipitated from unsynchronized HeLa cells could be phosphorylated in vitro by p34cdc2 and this phosphorylation created epitope(s) on lamins A/C to P-STM, suggesting that the phosphorylation site(s) mediated by p34cdc2-catalyzed reaction in vitro may represent the one(s) recognized by P-STM in mitotic cells. The aims of this study are to identify the P-STM recognizable epitopes on lamins A/C in mitotic phase and to quantify the sites of lamins A/C differentially phosphorylated at interphase and mitotic phase. We applied mass spectrometry and molecular biology technologies to identify and quantify lamins A/C phosphorylation site(s) recognized by P-STM. We showed that Thr-19 of lamins C after phosphorylation by p34cdc2 kinase represented the sole epitope to P-STM. The different levels of lamin A/C peptide 12SGAQASS19TPLSPT25R in control and nocodazole-treated cells revealed by SILAC (Stable Isotope Labeling with Amino acids in Cell culture) method suggest that Thr-19 of lamins A/C is differentially phosphorylated at interphase and mitotic phase.
指導教授推薦書 iii
口試委員會審定書 iv
碩士論文電子檔案上網授權書 iii
長庚大學碩士紙本論文著作授權書 iv
誌謝 v
中文摘要 vi
CHAPTER I Introduction 1
CHAPTER II Material and methods 7
CHAPTER III Results 16
CHAPTER IV Discussion 24
Reference lists 24
Figure legends 35
Appendix 56
Amanchy,R., Kalume,D.E., Iwahori,A., Zhong,J., and Pandey,A. (2005). Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). J. Proteome. Res 4, 1661-1671.
Benavente,R., Krohne,G., and Franke,W.W. (1985). Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell 41, 177-190.
Benner,G.E., Dennis,P.B., and Masaracchia,R.A. (1995). Activation of an S6/H4 kinase (PAK 65) from human placenta by intramolecular and intermolecular autophosphorylation. J. Biol. Chem. 270, 21121-21128.
Bialojan,C. and Takai,A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J. 256, 283-290.
Bokoch,G.M. (2003). Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743-781.
De Brabander,M.J., Van,d., V, Aerts,F.E., Borgers,M., and Janssen,P.A. (1976). The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res. 36, 905-916.
Eggert,M., Radomski,N., Tripier,D., Traub,P., and Jost,E. (1991). Identification of phosphorylation sites on murine nuclear lamin C by RP-HPLC and microsequencing. FEBS Lett. 292, 205-209.
Ficarro,S., Chertihin,O., Westbrook,V.A., White,F., Jayes,F., Kalab,P., Marto,J.A., Shabanowitz,J., Herr,J.C., Hunt,D.F., and Visconti,P.E. (2003). Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J. Biol. Chem. 278, 11579-11589.
Figeys,D. and Aebersold,R. (1998). High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: recent developments in technology and applications. Electrophoresis 19, 885-892.
Foisner,R. (2003). Cell cycle dynamics of the nuclear envelope. ScientificWorldJournal. 3, 1-20.
Franke,W.W. (1987). Nuclear lamins and cytoplasmic intermediate filament proteins: a growing multigene family. Cell 48, 3-4.
Glinski,M. and Weckwerth,W. (2005). Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene family in Arabidopsis thaliana: a mass spectrometry-based process for multiparallel peptide library phosphorylation analysis. Mol. Cell Proteomics. 4, 1614-1625.
Gruhler,A., Olsen,J.V., Mohammed,S., Mortensen,P., Faergeman,N.J., Mann,M., and Jensen,O.N. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell Proteomics. 4, 310-327.
Guilly,M.N., Bensussan,A., Bourge,J.F., Bornens,M., and Courvalin,J.C. (1987a). A human T lymphoblastic cell line lacks lamins A and C. EMBO J. 6, 3795-3799.
Guilly,M.N., Danon,F., Brouet,J.C., Bornens,M., and Courvalin,J.C. (1987b). Autoantibodies to nuclear lamin B in a patient with thrombopenia. Eur. J. Cell Biol. 43, 266-272.
Haas,M. and Jost,E. (1993a). Functional analysis of phosphorylation sites in human lamin A controlling lamin disassembly, nuclear transport and assembly. Eur. J. Cell Biol. 62, 237-247.
Haas,M. and Jost,E. (1993b). Functional analysis of phosphorylation sites in human lamin A controlling lamin disassembly, nuclear transport and assembly. Eur. J. Cell Biol. 62, 237-247.
Heald,R. and McKeon,F. (1990b). Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579-589.
Heald,R. and McKeon,F. (1990a). Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579-589.
Kaufmann,S.H. (1989). Additional members of the rat liver lamin polypeptide family. Structural and immunological characterization. J. Biol. Chem. 264, 13946-13955.
Kumar,R. and Vadlamudi,R.K. (2002). Emerging functions of p21-activated kinases in human cancer cells. J. Cell Physiol 193, 133-144.
Li,S. and Dass,C. (1999). Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal. Biochem. 270, 9-14.
Lin,F. and Worman,H.J. (1997). Expression of nuclear lamins in human tissues and cancer cell lines and transcription from the promoters of the lamin A/C and B1 genes. Exp. Cell Res. 236, 378-384.
Loyet,K.M., Stults,J.T., and Arnott,D. (2005). Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. Mol. Cell Proteomics. 4, 235-245.
Mayya,V., Rezual,K., Wu,L., Fong,M.B., and Han,D.K. (2006). Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell Proteomics. 5, 1146-1157.
McKeon,F.D., Kirschner,M.W., and Caput,D. (1986). Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319, 463-468.
Neubauer,G. and Mann,M. (1999). Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal. Chem. 71, 235-242.
Neville,D.C., Rozanas,C.R., Price,E.M., Gruis,D.B., Verkman,A.S., and Townsend,R.R. (1997). Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 6, 2436-2445.
Nuhse,T.S., Stensballe,A., Jensen,O.N., and Peck,S.C. (2003). Large-scale Analysis of in Vivo Phosphorylated Membrane Proteins by Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry. Mol. Cell Proteomics. 2, 1234-1243.
Ong,S.E., Blagoev,B., Kratchmarova,I., Kristensen,D.B., Steen,H., Pandey,A., and Mann,M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics. 1, 376-386.
Posewitz,M.C. and Tempst,P. (1999). Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883-2892.
Rudel,T. and Bokoch,G.M. (1997). Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571-1574.
Rush,J., Moritz,A., Lee,K.A., Guo,A., Goss,V.L., Spek,E.J., Zhang,H., Zha,X.M., Polakiewicz,R.D., and Comb,M.J. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94-101.
Tsai,I.C., Hsieh,Y.J., Lyu,P.C., and Yu,J.S. (2005). Anti-phosphopeptide antibody, P-STM as a novel tool for detecting mitotic phosphoproteins: identification of lamins A and C as two major targets. J. Cell Biochem. 94, 967-981.
Ward,G.E. and Kirschner,M.W. (1990). Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C. Cell 61, 561-577.
Westendorf,J.M., Rao,P.N., and Gerace,L. (1994). Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc. Natl. Acad. Sci. U. S. A 91, 714-718.
Yu,J.S., Chang,S.H., Chan,W.H., and Chen,H.C. (2001). Enzyme-linked immunosorbent assay for the determination of p21-activated kinase activity. J. Biochem. (Tokyo) 129, 243-251.
Yu,J.S., Chen,W.J., Ni,M.H., Chan,W.H., and Yang,S.D. (1998). Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family. Biochem. J. 334 ( Pt 1), 121-131.
Zheng,H., Hu,P., Quinn,D.F., and Wang,Y.K. (2005). Phospho-tyrosine proteomic study of interferon asignaling pathway using a combination ofimmunoprecipitation and immobilized metal affinity chromatography. Mol. Cell Proteomics.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃百富(2003),台灣非都市土地開發許可審議機制之演進,中興工程第79期,頁1-11。
2. 徐守正(2004),影響歐盟再生能源發展因素,能源報導第12期,頁25-28。
3. 江懷德(2002),我國推廣使用再生能源之策略與成效,能源節約技術報導,第45期,頁4-15。
4. 吳再益、林唐裕(1995),當前民營電廠興建遭遇之問題與因應對策,經濟情勢暨評論,第2卷第2期,頁111-122。
5. 王瑞興(2002),當前非都市土地使用管制的現況與發展(二),現代地政第255期,頁6-11。
6. 陳雅琴(2004),美國農業與環境政策的變革,農政與農情,第139卷第376期,頁81-87。
7. 張隆盛(2003),我國永續發展的問題與挑戰,國家政策論壇,第92期,頁263-273。
8. 王瑞興(2002),當前非都市土地使用管制的現況與發展(一),現代地政第254期,頁6-11。
9. 李堅明、王俊凱(2003),建立台灣永續能源發展指標與量化之研究,能源季刊第三十三卷第三期,頁3-17。
10. 23.曾平毅、黃益三,「改善我國駕照管理作業之研究」,中華民國運輸學刊第十五卷第四期,民國92年12月,pp.411~436。
11. 尤如瑾(2000),英華威公司開拓國內風力發電事業之經驗分享,電機產業資訊報導,第7卷第8期,頁46-54。
12. 22.曾平毅、黃益三、許卜仁,「由台北市交通事故資料初探駕駛人風險特性之研究」,都市交通季刊第18卷第1期,民92年3月,pp.15~23。
13. 余政達(2003),台灣風能發展的永續性評估與政策建議,能源季刊第33卷第2期,頁90-109。