跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃信榮
研究生(外文):Shin-Jong Huang
論文名稱:2-Hydroxyphytanoyl-CoALyase(2HPCL):一個能與GlycogenSynthaseKinase-3α(GSK-3α)有交互作用之新蛋白分子
論文名稱(外文):2-hydroxyphytanoyl-CoA Lyase (2HPCL): a New Interacting Protein of Glycogen Synthase Kinase-3α (GSK-3α)
指導教授:余兆松
指導教授(外文):Jau-Song Yu
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:蛋白激酶磷酸化質譜儀免疫共沉澱法交互作用蛋白
外文關鍵詞:GSK-3interacting proteinimmunoprecipitation2HPCL3-methyl group fatty acidMBPrecombinant protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Glycogen synthase kinase-3 (GSK-3) 為一種蛋白激酶 (protein kinase) ,GSK-3 可以藉由在其許多受質上進行磷酸化作用,改變其受質的功能與活性,進而參與調控許多細胞功能。GSK-3 家族包含兩種激酶,GSK-3α與GSK-3β。細胞中的 GSK-3 常具有高度激酶活性,目前已知許多的生理刺激因子,例如像是表皮生長因子和胰島素,則會藉由引發下游特定激酶活化,進而對 GSK-3 進行磷酸化/去活化的訊號傳遞路徑,使得 GSK-3 的激酶活性下降。然而,前人的研究到目前為止,大部分的重點都是著重在 GSK-3 磷酸化機制與其受質的鑑定,對於鑑定 GSK-3 之交互作用蛋白則較少著墨。一般來說,非受質性的交互作用蛋白,也有可能會參與調控 GSK-3 的活性。本論文的目的即在找尋新的 GSK-3 交互作用蛋白。利用專一辨識 GSK-3α 抗體以及質譜儀分析技術,我們在抗體所媒介的免疫沉澱蛋白裡,找到 2-hydroxyphytanoyl-CoA lyase (2HPCL) 。2HPCL 是一個參與在3-甲基脂肪酸α-氧化代謝作用的酵素。為了證明 2HPCL 與 GSK-3α有交互作用,我們在猿猴 COS-7 細胞株中過量表現 myc-2HPCL 以及 flag-GSK-3α後,接著進行免疫共沉澱法。我們發現到,不管使用了辨識 myc 或是 GSK-3α的抗體,都可以分別在其所沉澱下來的蛋白中,發現到 myc-2HPCL 以及 flag-GSK-3α;此外,我們製作了專一性辨識 2HPCL 的抗體,並利用此抗體在人類 A431 細胞株中,藉由辨識 2HPCL 或是 GSK-3α的抗體,也一樣可以偵測到內生性的 GSK-3α以及 2HPCL 被共同免疫沉澱下來。以同樣方法,我們卻沒有偵測到 GSK-3β與 2HPCL 被共同免疫沉澱下來。此外,我們將人類 2HPCL 與 GSK-3α基因選殖出來,在大腸桿菌中表現並純化出帶有 glutathione transferase (GST) 的 2HPCL (GST-2HPCL) , 與帶有六個 histidine (His) 標記的 GSK-3α (His-GSK-3α) 。利用這些材料為工具,藉由使用 glutathione-偶合的樹脂 (GSH-bead) 與 GST-2HPCL 和 His-GSK-3α 混合物作用之後,我們也在其結合的蛋白複合物中,偵測到 His-GSK3α 的存在。藉此我們可以知道, 2HPCL 會直接與 GSK-3α結合。接著我們鑑定 2HPCL 是否為 GSK-3α的磷酸化受質。為此,我們在大腸桿菌裡表現並純化重組蛋白 GST-GSK-3α。重組蛋白 GST-GSK-3α具有與 GSK-3α一樣的激酶活性,不僅能夠進行自我磷酸化,也能對已知的受質蛋白,如腦髓鞘鹼性蛋白 (myelin basic protein) 進行磷酸化作用。然而如果將 GST-2HPCL 當作受質進行磷酸化反應,不管是重組 GST-GSK-3α,或是從組織裡所純化出來的 GSK-3α,皆無法對 GST-2HPCL 進行磷酸化的動作。總結目前所得到的結果,我們發現到, 2HPCL 會與 GSK-3α進行交互作用,然而,卻無法被其磷酸化。因此,我們猜測, 2HPCL 的確是 GSK-3α新的交互作用蛋白,但角色並非是其受質蛋白。
Glycogen synthase kinase-3 (GSK-3) is a kinase subfamily involved in regulating diverse cell functions. It can phosphorylate many substrates in vivo and thereby modulate their functions in cells. The kinase subfamily consists of two members: GSK-3α and GSK-3β. GSK-3 has a highly basal activity in resting cells, which can be down-modulated by various physiological stimuli such as epithelial growth factor (EGF) and insulin, through a kinase mediated, phosphorylation-dependent mechanism. However, little attention has been focused on its interacting proteins, which may be also involved in the regulation of GSK-3 function in cells. The aim of this study is to identify new interacting protein(s) of GSK-3. Using anti-GSK-3α antibody to immunoprecipitated GSK-3α from human A431 cell lysates, the proteins present in the immunocomplex were separated by SDS-PAGE and each candidate protein was subjected to mass spectrometric analysis. One of the proteins, 2-hydroxyphytanoyl-CoA lyase (2HPCL) was identified. 2HPCL is an enzyme participating inα-oxidation of 3-methyl group fatty acids, which allows subsequent metabolism of these fatty acids for β-oxidation. In order to confirm the interaction between 2HPCL and GSK-3α, pCMV-myc/2HPCL and pflag-CMV2/GSK-3α were constructed and transiently expressed in COS-7 cells for coimmunoprecipitation experiments. Both myc-2HPCL and flag-GSK-3α can be detected in the immunocomplex pulled down by anti-myc or anti-GSK-3α antibodies. This interaction can be also detected in A431 cells by using anti-2HPCL or anti-GSK-3α antibody to pull down endogenous 2HPCL and GSK-3α. In contract, endogenous 2HPCL could not be co-immunoprecipitated by GSK-3β. We also cloned the cDNA for human 2HPCL and GSK-3α. The GST-fusion 2HPCL and GSK-3α as well as His-tagged GSK-3α recombinant proteins were expressed and purified. We demonstrated that His-GSK-3α can be detected in the GST-2HPCL protein complex pulled down by the glutathione-conjugated bead in vitro, which indicates a direct interaction between 2HPCL and GSK-3α. Purified recombinant GST-2HPCL and GST-GSK-3α could phosphorylate itself and myelin basic protein (MBP), one of GSK-3α substrate. However, recombinant GST-GSK-3α and GSK-3α purified from pig brain failed to phosphorylate GST-2HPCL in vitro. In summary, we identified 2HPCL as a new GSK-3α-interacting protein, and 2HPCL may not be a substrate for GSK-3α.
目 錄
指導教授推薦書
口試委員會審定書
授權書 -iii-
誌謝 -iv-
中文摘要 -v-
英文摘要 -viii-
第一章 簡介 -1-
1.1 GSK-3的鑑定 -1-
1.2 GSK-3的活性調控 -1-
1.3 GSK-3為一種可調控許多受質的激酶 -2-
1.4 GSK-3參與在調控許多細胞功能 -2-
1.5 GSK-3的交互作用蛋白 -7-
1.6 GSK-3在細胞內的位置 -8-
1.7 本文研究目的 -9-
第二章 材料與方法 -11-
2.1 材料 -11-
2.2 膠體染色、膠體內水解與質譜儀分析 -11-
2.3 細胞培養 -12-
2.4 聚合酶鏈鎖反應 -13-
2.5 重組質體建構 -13-
2.6 質體短暫性轉染與共同轉染 -14-
2.7 西方墨點法 -15-
2.8 細胞蛋白萃取 -16-
2.9 免疫沉澱法 -16-
2.10 大腸桿菌重組GST融合蛋白製備 -17-
2.11 大腸桿菌重組His標定蛋白製備 -18-
2.12 激酶活性分析 -19-
2.13 2HPCL抗體製造 -20-
2.14 2HPCL-internal-15與-19胜肽偶合管柱製備 -20-
2.15 2HPCL抗體純化(兔子,多株性) -20-
第三章 實驗結果
3.1 藉由質譜分析來自A431細胞株的免疫沉澱物鑑定出2HCPL可能為潛在的GSK-3α之交互作用蛋白 -22-
3.2 製造2HPCL表現質體並在哺乳類細胞中過度表現2HPCL與GSK-3α -23-
3.3在哺乳類細胞中過度表現的2HPCL與GSK-3α彼此間能產生交互作用 -23-
3.4 內生性之2HPCL會與GSK-3α彼此間有交互作用 -24-
3.5 GSK-3α與2HPCL重組蛋白之製造 -25-
3.6 重組蛋白2HPCL無法被GSK-3α所磷酸化 -27-
3.7 GSK-3α與2HPCL會有直接的交互作用 -28-
3.8 2HPCL能些微激發GSK-3α的激酶活性 -28-
第四章 討論 -30-
第五章 引用文獻 -35-
圖一、來自A431細胞株之GSK-3α免疫複合體 -40-
圖二、藉由質譜分析鑑定出第三號蛋白位置為2HPCL -41-
圖三、在COS-7細胞株中短暫性過量表現pFLAG-CMV-2/GSK-3α與pCMV-Myc/2HPCL -43-
圖四、在短暫性過量表現pFLAG-CMV-2/GSK-3α與pCMV-Myc/2HPCL的COS-7細胞株中進行免疫共沉澱法 -44-
圖五、在人類2HPCL的胺基酸序列上分析其疏水特性 -45-
圖六、2HPCL-I-18抗體之純化結果 -46-
圖七、利用純化之2HPCL抗體在細胞萃取蛋白中進行免疫墨點法 -47-
圖八、對於內生性之2HPCL與GSK-3α進行免疫共沉澱法 -48-
圖九、預測在2HPCL上能夠被GSK-3α所磷酸化的位置 -49-
圖十、產生重組融合蛋白GST-GSK-3α -50-
圖十一、產生重組融合蛋白GST-2HPCL -51-
圖十二、對於GST-GSK-3α進行激酶活性測試 -52-
圖十三、利用GST-GSK-3α對GST-2HPCL進行激酶活性測試 -53-
圖十四、利用自豬腦純化之GSK-3α對GST-2HPCL進行激酶活性測試 -54-
圖十五、產生重組融合蛋白His-GSK-3α -55-
圖十六、His-GSK-3α與GST-2HPCL之結合測試 -56-
圖十七、對於His-GSK-3α進行激酶活性測試 -57-
圖十八、測試當加入GST-2HPCL後對His-GSK-3α的激酶活性影響 -58-
Reference

Alt,J.R., Cleveland,J.L., Hannink,M., and Diehl,J.A. (2000). Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 14, 3102-3114.
Bijur,G.N., De,S.P., and Jope,R.S. (2000). Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J. Biol. Chem. 275, 7583-7590.
Bijur,G.N. and Jope,R.S. (2003). Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport 14, 2415-2419.
Croes,K., Casteels,M., De,H.E., Mannaerts,G.P., and Van Veldhoven,P.P. (1996). alpha-Oxidation of 3-methyl-substituted fatty acids in rat liver. Production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate. Eur. J Biochem. 240, 674-683.
Cross,D.A., Alessi,D.R., Cohen,P., Andjelkovich,M., and Hemmings,B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.
Cross,D.A., Culbert,A.A., Chalmers,K.A., Facci,L., Skaper,S.D., and Reith,A.D. (2001). Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94-102.
Embi,N., Rylatt,D.B., and Cohen,P. (1980). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107, 519-527.
Fiol,C.J., Mahrenholz,A.M., Wang,Y., Roeske,R.W., and Roach,P.J. (1987). Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J. Biol. Chem. 262, 14042-14048.
Foulon,V., Antonenkov,V.D., Croes,K., Waelkens,E., Mannaerts,G.P., Van Veldhoven,P.P., and Casteels,M. (1999). Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during alpha-oxidation of 3-methyl-branched fatty acids. Proc. Natl. Acad. Sci. U. S. A 96, 10039-10044.
Frame,S. and Cohen,P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1-16.
garwal-Mawal,A., Qureshi,H.Y., Cafferty,P.W., Yuan,Z., Han,D., Lin,R., and Paudel,H.K. (2003). 14-3-3 connects glycogen synthase kinase-3 beta to tau within a brain microtubule-associated tau phosphorylation complex. J. Biol. Chem. 278, 12722-12728.
Hanger,D.P., Betts,J.C., Loviny,T.L., Blackstock,W.P., and Anderton,B.H. (1998). New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. J. Neurochem. 71, 2465-2476.
Hetman,M., Cavanaugh,J.E., Kimelman,D., and Xia,Z. (2000). Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20, 2567-2574.
Hoeflich,K.P., Luo,J., Rubie,E.A., Tsao,M.S., Jin,O., and Woodgett,J.R. (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90.
Hoshi,M., Sato,M., Kondo,S., Takashima,A., Noguchi,K., Takahashi,M., Ishiguro,K., and Imahori,K. (1995). Different localization of tau protein kinase I/glycogen synthase kinase-3 beta from glycogen synthase kinase-3 alpha in cerebellum mitochondria. J. Biochem. (Tokyo) 118, 683-685.
Hoshi,M., Takashima,A., Noguchi,K., Murayama,M., Sato,M., Kondo,S., Saitoh,Y., Ishiguro,K., Hoshino,T., and Imahori,K. (1996). Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc. Natl. Acad. Sci. U. S. A 93, 2719-2723.
Hughes,K., Pulverer,B.J., Theocharous,P., and Woodgett,J.R. (1992). Baculovirus-mediated expression and characterisation of rat glycogen synthase kinase-3 beta, the mammalian homologue of the Drosophila melanogaster zeste-white 3sgg homeotic gene product. Eur. J Biochem. 203, 305-311.
Jho,E., Lomvardas,S., and Costantini,F. (1999). A GSK3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression. Biochem. Biophys. Res. Commun. 266, 28-35.
Jia,J., Amanai,K., Wang,G., Tang,J., Wang,B., and Jiang,J. (2002). Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416, 548-552.
Jope,R.S. and Johnson,G.V.W. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends in Biochemical Sciences 29, 95-102.
Maggirwar,S.B., Tong,N., Ramirez,S., Gelbard,H.A., and Dewhurst,S. (1999). HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J. Neurochem. 73, 578-586.
Magrane,J., Smith,R.C., Walsh,K., and Querfurth,H.W. (2004). Heat Shock Protein 70 Participates in the Neuroprotective Response to Intracellularly Expressed {beta}-Amyloid in Neurons. J. Neurosci. 24, 1700-1706.
Manoukian,A.S. and Woodgett,J.R. (2002). Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv. Cancer Res. 84, 203-229.
Mihalik,S.J., Rainville,A.M., and Watkins,P.A. (1995). Phytanic acid alpha-oxidation in rat liver peroxisomes. Production of alpha-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur. J Biochem. 232, 545-551.
Morishima-Kawashima,M., Hasegawa,M., Takio,K., Suzuki,M., Yoshida,H., Titani,K., and Ihara,Y. (1995). Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem. 270, 823-829.
Mukai,F., Ishiguro,K., Sano,Y., and Fujita,S.C. (2002). Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3beta. Journal of Neurochemistry 81, 1073-1083.
Pap,M. and Cooper,G.M. (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273, 19929-19932.
Parker,P.J., Caudwell,F.B., and Cohen,P. (1983). Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J Biochem. 130, 227-234.
Price,M.A. and Kalderon,D. (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108, 823-835.
Salic,A., Lee,E., Mayer,L., and Kirschner,M.W. (2000). Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell 5, 523-532.
Song,L., De,S.P., and Jope,R.S. (2002). Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277, 44701-44708.
Sun,W., Qureshi,H.Y., Cafferty,P.W., Sobue,K., garwal-Mawal,A., Neufield,K.D., and Paudel,H.K. (2002). Glycogen synthase kinase-3beta is complexed with tau protein in brain microtubules. J. Biol. Chem. 277, 11933-11940.
Takashima,A., Noguchi,K., Sato,K., Hoshino,T., and Imahori,K. (1993). Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. U. S. A 90, 7789-7793.
Thomas,G.M., Frame,S., Goedert,M., Nathke,I., Polakis,P., and Cohen,P. (1999). A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett. 458, 247-251.
Watcharasit,P., Bijur,G.N., Zmijewski,J.W., Song,L., Zmijewska,A., Chen,X., Johnson,G.V., and Jope,R.S. (2002). Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc. Natl. Acad. Sci. U. S. A 99, 7951-7955.
Welsh,G.I., Miller,C.M., Loughlin,A.J., Price,N.T., and Proud,C.G. (1998). Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett. 421, 125-130.
Welsh,G.I. and Proud,C.G. (1993). Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem. J 294 ( Pt 3), 625-629.
Woodgett,J.R. (1991). cDNA cloning and properties of glycogen synthase kinase-3. Methods Enzymol. 200, 564-577.
Wu,C.C., Chien,K.Y., Tsang,N.M., Chang,K.P., Hao,S.P., Tsao,C.H., Chang,Y.S., and Yu,J.S. (2005). Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics. 5, 3173-3182.
Yanagisawa,M., Planel,E., Ishiguro,K., and Fujita,S.C. (1999). Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer's disease. FEBS Letters 461, 329-333.
Yu,J.S., Chen,H.C., and Yang,S.D. (1997). Reversible tyrosine phosphorylation/dephosphorylation of proline-directed protein kinase FA/glycogen synthase kinase-3alpha in A431 cells. J. Cell Physiol 171, 95-103.
Yu,J.S., Chen,W.J., Ni,M.H., Chan,W.H., and Yang,S.D. (1998). Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family. Biochem. J. 334 ( Pt 1), 121-131.
Yu,J.S. and Yang,S.D. (1994). Tyrosine dephosphorylation and concurrent inactivation of protein kinase FA/GSK-3 alpha by genistein in A431 cells. J Cell Biochem. 56, 131-141.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top