|
1.Huang, C.C., et al., Neurologic complications in children with enterovirus 71 infection. N Engl J Med, 1999. 341(13): p. 936-42. 2.Sawyer, M.H., Enterovirus infections: diagnosis and treatment. Curr Opin Pediatr, 2001. 13(1): p. 65-9. 3.Ho, M., Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect, 2000. 33(4): p. 205-16. 4.Oberste, M., et al., Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol, 2001. 82(Pt 2): p. 409-16. 5.Flanegan, J.B., et al., Covalent linkage of a protein to a defined nucleotide sequence at the 5'-terminus of virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci U S A, 1977. 74(3): p. 961-5. 6.Norder, H., L. Bjerregaard, and L.O. Magnius, Open reading frame sequence of an Asian enterovirus 73 strain reveals that the prototype from California is recombinant. J Gen Virol, 2002. 83(Pt 7): p. 1721-8. 7.Schultheiss, T., et al., Polyprotein processing in echovirus 22: a first assessment. Biochem Biophys Res Commun, 1995. 217(3): p. 1120-7. 8.Paul, A.V., et al., Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol, 2003. 77(2): p. 891-904. 9.Minor, P.D., et al., Location and primary structure of a major antigenic site for poliovirus neutralization. Nature, 1983. 301(5902): p. 674-9. 10.McKnight, K.L. and S.M. Lemon, Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J Virol, 1996. 70(3): p. 1941-52. 11.Giachetti, C. and B.L. Semler, Role of a viral membrane polypeptide in strand-specific initiation of poliovirus RNA synthesis. J Virol, 1991. 65(5): p. 2647-54. 12.Kitamura, N., et al., Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature, 1981. 291(5816): p. 547-53. 13.Teterina, N.L., et al., Evidence for functional protein interactions required for poliovirus RNA replication. J Virol, 2006. 80(11): p. 5327-37. 14.Pfister, T. and E. Wimmer, Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem, 1999. 274(11): p. 6992-7001. 15.Saier, M.H., Jr. and P. McCaldon, Statistical and functional analyses of viral and cellular proteins with N-terminal amphipathic alpha-helices with large hydrophobic moments: importance to macromolecular recognition and organelle targeting. J Bacteriol, 1988. 170(5): p. 2296-300. 16.Paul, A.V., A. Molla, and E. Wimmer, Studies of a putative amphipathic helix in the N-terminus of poliovirus protein 2C. Virology, 1994. 199(1): p. 188-99. 17.Bienz, K., et al., Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol, 1990. 64(3): p. 1156-63. 18.Rodriguez, P.L. and L. Carrasco, Poliovirus protein 2C contains two regions involved in RNA binding activity. J Biol Chem, 1995. 270(17): p. 10105-12. 19.Agol, V.I., et al., Two types of death of poliovirus-infected cells: caspase involvement in the apoptosis but not cytopathic effect. Virology, 1998. 252(2): p. 343-53. 20.Schlegel, A., et al., Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol, 1996. 70(10): p. 6576-88. 21.Wang, Y., et al., IXL, a new subunit of the mammalian Mediator complex, functions as a transcriptional suppressor. Biochem Biophys Res Commun, 2004. 325(4): p. 1330-8. 22.Garrett-Engele, C.M., et al., intersex, a gene required for female sexual development in Drosophila, is expressed in both sexes and functions together with doublesex to regulate terminal differentiation. Development, 2002. 129(20): p. 4661-75. 23.Dynan, W.S. and R. Tjian, The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell, 1983. 35(1): p. 79-87. 24.Tanese, N. and R. Tjian, Coactivators and TAFs: a new class of eukaryotic transcription factors that connect activators to the basal machinery. Cold Spring Harb Symp Quant Biol, 1993. 58: p. 179-85. 25.Sato, S., et al., A mammalian homolog of Drosophila melanogaster transcriptional coactivator intersex is a subunit of the mammalian Mediator complex. J Biol Chem, 2003. 278(50): p. 49671-4. 26.Lu, W., et al., Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol, 1997. 7(2): p. 85-94. 27.Kuang, D., et al., Cloning and characterization of a family C orphan G-protein coupled receptor. J Neurochem, 2005. 93(2): p. 383-91. 28.Lefkowitz, R.J., G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem, 1998. 273(30): p. 18677-80. 29.Flower, D.R., Modelling G-protein-coupled receptors for drug design. Biochim Biophys Acta, 1999. 1422(3): p. 207-34. 30.Bermak, J.C., et al., Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol, 2001. 3(5): p. 492-8. 31.Heydorn, A., et al., A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem, 2004. 279(52): p. 54291-303. 32.Fredriksson, R., et al., The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol, 2003. 63(6): p. 1256-72. 33.Stacey, M., et al., LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci, 2000. 25(6): p. 284-9. 34.Bjarnadottir, T.K., et al., The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics, 2004. 84(1): p. 23-33. 35.Slusarski, D.C., V.G. Corces, and R.T. Moon, Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 1997. 390(6658): p. 410-3. 36.Barnes, M.R., D.M. Duckworth, and L.J. Beeley, Frizzled proteins constitute a novel family of G protein-coupled receptors, most closely related to the secretin family. Trends Pharmacol Sci, 1998. 19(10): p. 399-400. 37.Palczewski, K., et al., Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 2000. 289(5480): p. 739-45. 38.Fredriksson, R., et al., There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem Biophys Res Commun, 2003. 301(3): p. 725-34. 39.Yamamoto, Y., et al., Direct binding of the human homologue of the Drosophila disc large tumor suppressor gene to seven-pass transmembrane proteins, tumor endothelial marker 5 (TEM5), and a novel TEM5-like protein. Oncogene, 2004. 23(22): p. 3889-97. 40.Makino, A., et al., G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol, 2006. 290(6): p. C1633-9. 41.Martinez, V.G., et al., Galectin-1, a cell adhesion modulator, induces apoptosis of rat Leydig cells in vitro. Glycobiology, 2004. 14(2): p. 127-37. 42.Ammendolia, M.G., et al., Poliovirus infection induces apoptosis in CaCo-2 cells. J Med Virol, 1999. 59(1): p. 122-9. 43.McMinn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107. 44.Gray, J.A. and B.L. Roth, Cell biology. A last GASP for GPCRs? Science, 2002. 297(5581): p. 529-31.
|