跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李振誠
研究生(外文):Chen-Cheng Li
論文名稱:介白素15促進臍帶血及成人周邊血中CD4+CD25+T細胞在體外增殖且保留其免疫抑制功能
論文名稱(外文):Umbilical cord and adult peripheral blood CD4+CD25+ T cells were expanded by interleukin-15 in vitro and manifested suppressive function
指導教授:郭敏玲郭敏玲引用關係
指導教授(外文):Ming-Ling Kuo
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:59
中文關鍵詞:介白素15臍帶血成人周邊血調節性T細胞
外文關鍵詞:interleukin-15umbilical cord bloodadult peripheral bloodregulatory T cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:1
調節性 T 細胞 (regulatory T cells) 為 T 細胞中具有免疫抑制功能的一亞群,同時扮演維持免疫系統自體耐受性 (self-tolerance) 的角色。初步發現,存在於成人周邊血 (adult peripheral blood) 中的人類調節性 T 細胞,表現 CD4 分子與高量 IL-2 受體  次單元 (CD25; CD4+CD25high)。近年來的報告顯示人類臍帶血 (umbilical cord blood) 中這一群細胞比例較多,可作為良好的調節性 T 細胞的來源。前人的報導顯示,體外培養調節性 T 細胞在外加 IL-2 的條件之下,可以增加調節性T 細胞的數目。但是因為 IL-2 容易使得活化的 T 細胞凋亡 (activation induced cell death),而 IL-15 則較不易。為了提高人類臍帶血調節性 T 細胞的應用性,本論文利用希望藉由 IL-15 的幫助在體外培養並增加人類臍帶血調節性 T 細胞的數量。本論文發現受 IL-15 刺激增生的臍帶血及成人周邊血中 CD4+CD25+ T 細胞,呈現與 IL-2 刺激的臍帶血及成人周邊血CD4+CD25+ T 細胞相似的外表型。相較於成人周邊血 CD4+CD25+ T 細胞,於體外刺激增生的臍帶血 CD4+CD25+ T 細胞分泌較高量的 TGF-。在體外受到刺激增生的 CD4+CD25+ T 細胞能夠抑制同種異體的成人CD4+ T 細胞的增生以及IFN- 的分泌。儘管在 1/1 抑制/反應細胞的比例之下,體外增生的臍帶血 CD4+CD25+ T 細胞呈現較成人周邊血 CD4+CD25+ T 細胞更高的抑制能力,但是在 1/8 抑制/反應細胞的比例下兩者都會失去抑制功能。本論文發現無論是臍帶血或成人周邊血,在體外受到 IL-15 刺激增生的 CD4+CD25+ T 細胞與前人報導受到 IL-2 刺激增生的 CD4+CD25+ T 細胞一致,都需要透過細胞與細胞之間的作用達成其抑制效果。本研究提出了在體外受到 IL-2 或 IL-15 刺激增生的臍帶血 CD4+CD25+ T 細胞,相較於成人血 CD4+CD25+ T 細胞具有更高的免疫抑制功能,因此可作為調節性 T 細胞的來源的證據。在體外刺激增的 CD4+CD25+ T 細胞或許可以進一步應用於自體免疫疾病的治療。
Regulatory T (Treg) cells are a subpopulation of T cells with immunosuppressive function and play a pivotal role in the maintenance of self-tolerance. Human Treg cells were primarily defined by the expression of CD4 molecules together with intensive expression of interleukin (IL)-2 receptor  chains (CD25; CD4+CD25high) from adult peripheral blood (APB). Umbilical cord blood (UCB) has recently been reported to be a good source for Treg cells. Although exogenous IL-2 was required for the expansion of Treg cells in vitro, the presence of IL-2 usually induces activation induced cell death (AICD) during T cell activation. IL-15, however, has similar potent to activate T cells with less effect on AICD. For potential usage of UCB Treg cells, we applied IL-15 as well as IL-2 to expand CD4+CD25+ cells in vitro. The phenotypes of IL-15 expanded CD4+CD25+ cells were similar to IL-2 expanded CD4+CD25+ cells in both UCB and APB. However, in vitro expanded UCB CD4+CD25+ cells secreted higher level of TGF- than APB. The in vitro expanded CD4+CD25+ cells suppressed the proliferation of allogeneic adult CD4+ cells and reduced the accumulation of IFN-. Despite, the UCB CD4+CD25+ cells exerted higher suppressive activity than APB CD4+CD25+ cells at 1/1 suppressor-responder ratio. Both cell populations lost their suppressive function at 1/8 suppressor-responder ratio. The suppressive function of both IL-2 and IL-15 expanded CD4+CD25+ cells were mediated through cell-cell contact manners. These evidences supported that UCB CD4+CD25+ cells with IL-2 or IL-15 treatment will be a feasible source of Treg cells for the therapy of autoimmune disorders.
指導教授推薦書 …………………………………………………………口試委員會審定書 ………………………………………………………授權書 ………………………………………………………………... iii 中文摘要 ……………………………………………………………... iv
英文摘要 ……………………………………………………………… v 誌謝 …………………………………………………………………... vi

Introduction …………………………………………………………… 1
Application of umbilical cord blood ……………………………….. 1
Regulatory T cells ………………………………………………….. 2
Interleukin-15 …………………………….………………………… 5
Materials and Methods ………………………………………………... 8
Magnetic cell sorting (MACS) purification of CD25+ and CD25- from CD4+ T cells ………………………………………………………... 8
The culture of UCB and APB CD4+CD25+ cells …………………... 9
The proliferation of CD4+CD25+ and CD4+CD25- cells ………….. 10
Antibodies and flow cytometry …………………………………… 11
Cytokine analysis by ELISA ……………………………………… 13
Suppressive function assay ……………………………………….. 15
Statistical analysis ………………………………………………… 17

Results ………………………………………………………………. 18
Enriched UCB CD4+CD25+ T cells contained more CD25high and FoxP3+ cells than enriched APB CD4+CD25+ cells ……………… 18
UCB and APB CD4+CD25+ T cells were expanded by TCR and CD28 signaling in the presence of exogenous IL-2 and IL-15 in vitro …. 19
Exogenous IL-2 and IL-15 contributed to the living cells percentage of expanded UCB and APB CD4+CD25+ T cells …………………… 20
Exogenous IL-2 and IL-15 promoted the proliferation of UCB and APB CD4+CD25+ T cells …………………………………………. 21
IL-2 and IL-15 promoted the phenotypes of in vitro expanded CD4+CD25+ T cells to Treg cells like ……………………………… 22
In vitro expanded UCB CD4+CD25+ cells expressed higher TGF- but lower IL-10 than expanded APB CD4+CD25+ cells …………….... 23
In vitro expanded CD4+CD25+ cells suppressed the proliferation of allogeneic adult CD4+ T cells …………………………………….. 24
In vitro expanded CD4+CD25+ cells reduced the interferon (IFN)- production of allogeneic adult CD4+ T cells ……………………… 26
In vitro expanded UCB CD4+CD25+ T cells exerted higher suppressive activity than APB CD4+CD25+ T cells ………………………..….. 27 TRIL-15 cells inhibited the proliferation of responder cells through cell contact-dependent manner as well as TRIL-2 cells …………………. 28

Discussion ……………………………………………………………. 29

Table and Figures …………………………………………………….. 36
Table 1. The summary of Treg cells associated characteristics of in vitro expanded UCB and APB CD4+CD25+ T cells …………………….. 36
Fig. 1 UCB and APB CD4+CD25+ cells were enriched from peripheral blood mononuclear cells (PBMCs) ………………………………... 37
Fig. 2 Exogenous IL-2 and IL-15 contributed to the expansion of UCB and APB CD4+CD25+ cells in vitro ……………………………….. 39
Fig. 3 The exogenous IL-2 and IL-15 enhanced the survivals of expanded UCB and APB CD4+CD25+ T cells in vitro ……………. 40
Fig. 4 Exogenous IL-2 and IL-15 promoted the proliferation of CD4+CD25+ T cells in vitro ……………………………………….. 42
Fig. 5 Exogenous IL-2 and IL-15 increased the expression of Treg cells related markers on in vitro expanded UCB and APB CD4+CD25+ T cells ………………………………………………………………... 44
Fig. 6 Both exogenous IL-2 and IL-15 increased the production of IL-10 from either UCB or APB CD4+CD25+ T cells and expanded UCB CD4+CD25+ T cells secreted higher TGF- than APB ……… 46
Fig. 7 In vitro expanded UCB and APB CD4+CD25+ T cells suppressed the proliferation of allogeneic adult CD4+ T cells ………………… 47
Fig. 8 In vitro expanded UCB CD4+CD25+ T cells suppressed the proliferation of allogeneic adult CD4+ T cells substantially and also APB CD4+CD25+ T cells slightly ………………………………… 48
Fig. 9 The production of interferon- from allogeneic adult CD4+ cells was inhibited by in vitro expanded UCB and APB CD4+CD25+ but not CD4+CD25- cells …………………………………………………. 49
Fig. 10 In vitro expanded UCB CD4+CD25+ T cells exerted higher suppressive activities than APB ………………………………….. 50
Fig. 11 Both UCB (A) and APB (B) TRIL-15 cells as well as TRIL-2 cells suppressed the proliferation of responders through cell contact-dependent manners ………………………………………. 51

Reference ……………………………………………………………. 52
Ahmadzadeh, M. and Rosenberg, S. A. (2006). IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409-2414.
Alpdogan, O. and van den Brink, M. R. (2005). IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol 26, 56-64.
Annacker, O., Pimenta-Araujo, R., Burlen-Defranoux, O., Barbosa, T. C., Cumano, A., and Bandeira, A. (2001). CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 166, 3008-3018.
Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L., and Powrie, F. (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190, 995-1004.
Bacchetta, R., Sartirana, C., Levings, M. K., Bordignon, C., Narula, S., and Roncarolo, M. G. (2002). Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol 32, 2237-2245.
Baecher-Allan, C., Brown, J. A., Freeman, G. J., and Hafler, D. A. (2001). CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167, 1245-1253.
Berard, M., Brandt, K., Bulfone-Paus, S., and Tough, D. F. (2003). IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 170, 5018-5026.
Bulfone-Pau, S. S., Bulanova, E., Pohl, T., Budagian, V., Durkop, H., Ruckert, R., Kunzendorf, U., Paus, R., and Krause, H. (1999). Death deflected: IL-15 inhibits TNF-alpha-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Ralpha chain. Faseb J 13, 1575-1585.
Bulfone-Paus, S., Ungureanu, D., Pohl, T., Lindner, G., Paus, R., Ruckert, R., Krause, H., and Kunzendorf, U. (1997). Interleukin-15 protects from lethal apoptosis in vivo. Nat Med 3, 1124-1128.
Dieckmann, D., Plottner, H., Berchtold, S., Berger, T., and Schuler, G. (2001). Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193, 1303-1310.
Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336.
Fontenot, J. D., and Rudensky, A. Y. (2005). A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6, 331-337.
Fritzsching, B., Oberle, N., Eberhardt, N., Quick, S., Haas, J., Wildemann, B., Krammer, P. H., and Suri-Payer, E. (2005). In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol 175, 32-36.
Fuss, I. J., Boirivant, M., Lacy, B., and Strober, W. (2002). The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol 168, 900-908.
Giri, J. G., Kumaki, S., Ahdieh, M., Friend, D. J., Loomis, A., Shanebeck, K., DuBose, R., Cosman, D., Park, L. S., and Anderson, D. M. (1995). Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. Embo J 14, 3654-3663.
Gluckman, E. (2000). Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp Hematol 28, 1197-1205.
Godfrey, W. R., Ge, Y. G., Spoden, D. J., Levine, B. L., June, C. H., Blazar, B. R., and Porter, S. B. (2004). In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104, 453-461.
Godfrey, W. R., Spoden, D. J., Ge, Y. G., Baker, S. R., Liu, B., Levine, B. L., June, C. H., Blazar, B. R., and Porter, S. B. (2005). Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 105, 750-758.
Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., and et al. (1994). Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965-968.
Groux, H. (2003). Type 1 T-regulatory cells: their role in the control of immune responses. Transplantation 75, 8S-12S.
Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R., and Edinger, M. (2004). Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 104, 895-903.
Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
Jonuleit, H. and Schmitt, E. (2003). The regulatory T cell family: distinct subsets and their interrelations. J Immunol 171, 6323-6327.
Jonuleit, H., Schmitt, E., Stassen, M., Tuettenberg, A., Knop, J., and Enk, A. H. (2001). Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193, 1285-1294.
Khattri, R., Cox, T., Yasayko, S. A., and Ramsdell, F. (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4, 337-342.
Koenen, H. J., Fasse, E., and Joosten, I. (2003). IL-15 and cognate antigen successfully expand de novo-induced human antigen-specific regulatory CD4+ T cells that require antigen-specific activation for suppression. J Immunol 171, 6431-6441.
Konno, S., Asano, K., Okamoto, K., and Adachi, M. (1994). Inhibition of cytokine production from human peripheral blood leukocytes by anti-allergic agents in vitro. Eur J Pharmacol 264, 265-268.
Levings, M. K., Bacchetta, R., Schulz, U., and Roncarolo, M. G. (2002). The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 129, 263-276.
Levings, M. K., Sangregorio, R., and Roncarolo, M. G. (2001). Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193, 1295-1302.
Li, L., Godfrey, W. R., Porter, S. B., Ge, Y., June, C. H., Blazar, B. R., and Boussiotis, V. A. (2005). CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood 106, 3068-3073.
Lin, S. J., Cheng, P. J., Hsiao, S. S., Lin, H. H., Hung, P. F., and Kuo, M. L. (2005). Differential effect of IL-15 and IL-2 on survival of phytohemagglutinin-activated umbilical cord blood T cells. Am J Hematol 80, 106-112.
Lin, S. J., Yu, J. C., Cheng, P. J., Hsiao, S. S., and Kuo, M. L. (2003). Effect of interleukin-15 on anti-CD3/anti-CD28 induced apoptosis of umbilical cord blood CD4+ T cells. Eur J Haematol 71, 425-432.
Lodolce, J. P., Boone, D. L., Chai, S., Swain, R. E., Dassopoulos, T., Trettin, S., and Ma, A. (1998). IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669-676.
Mahic, M., Yaqub, S., Johansson, C. C., Tasken, K., and Aandahl, E. M. (2006). FOXP3+CD4+CD25+ Adaptive Regulatory T Cells Express Cyclooxygenase-2 and Suppress Effector T Cells by a Prostaglandin E2-Dependent Mechanism. J Immunol 177, 246-254.
McHugh, R. S., Shevach, E. M., and Thornton, A. M. (2001). Control of organ-specific autoimmunity by immunoregulatory CD4(+)CD25(+) T cells. Microbes Infect 3, 919-927.
McHugh, R. S., Whitters, M. J., Piccirillo, C. A., Young, D. A., Shevach, E. M., Collins, M., and Byrne, M. C. (2002). CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311-323.
Nakamura, K., Kitani, A., Fuss, I., Pedersen, A., Harada, N., Nawata, H., and Strober, W. (2004). TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172, 834-842.
Nakamura, K., Kitani, A., and Strober, W. (2001). Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194, 629-644.
O'Garra, A. and Vieira, P. (2003). Twenty-first century Foxp3. Nat Immunol 4, 304-306.
Ramsdell, F. and Ziegler, S. F. (2003). Transcription factors in autoimmunity. Curr Opin Immunol 15, 718-724.
Rao, P. E., Petrone, A. L., and Ponath, P. D. (2005). Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{beta}. J Immunol 174, 1446-1455.
Read, S., Malmstrom, V., and Powrie, F. (2000). Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192, 295-302.
Roncarolo, M. G., Bacchetta, R., Bordignon, C., Narula, S., and Levings, M. K. (2001). Type 1 T regulatory cells. Immunol Rev 182, 68-79.
Sakaguchi, S. (2004). Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562.
Sakaguchi, S., Sakaguchi, N., Shimizu, J., Yamazaki, S., Sakihama, T., Itoh, M., Kuniyasu, Y., Nomura, T., Toda, M., and Takahashi, T. (2001). Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182, 18-32.
Shevach, E. M. (2002). CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2, 389-400.
Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., and Sakaguchi, S. (2002). Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3, 135-142.
Suen, Y., Lee, S. M., Qian, J., van de Ven, C., and Cairo, M. S. (1998). Dysregulation of lymphokine production in the neonate and its impact on neonatal cell mediated immunity. Vaccine 16, 1369-1377.
Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T. W., and Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192, 303-310.
Takahata, Y., Nomura, A., Takada, H., Ohga, S., Furuno, K., Hikino, S., Nakayama, H., Sakaguchi, S., and Hara, T. (2004). CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol 32, 622-629.
Wagner, J. E., Kernan, N. A., Steinbuch, M., Broxmeyer, H. E., and Gluckman, E. (1995). Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet 346, 214-219.
Watson, W., Oen, K., Ramdahin, R., and Harman, C. (1991). Immunoglobulin and cytokine production by neonatal lymphocytes. Clin Exp Immunol 83, 169-174.
Weiner, H. L. (2001a). Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182, 207-214.
Weiner, H. L. (2001b). The mucosal milieu creates tolerogenic dendritic cells and T(R)1 and T(H)3 regulatory cells. Nat Immunol 2, 671-672.
Zelenika, D., Adams, E., Humm, S., Lin, C. Y., Waldmann, H., and Cobbold, S. P. (2001). The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. Immunol Rev 182, 164-179.
Zhang, X., Sun, S., Hwang, I., Tough, D. F., and Sprent, J. (1998). Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591-599.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top