(54.236.58.220) 您好!臺灣時間:2021/03/05 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李振誠
研究生(外文):Chen-Cheng Li
論文名稱:介白素15促進臍帶血及成人周邊血中CD4+CD25+T細胞在體外增殖且保留其免疫抑制功能
論文名稱(外文):Umbilical cord and adult peripheral blood CD4+CD25+ T cells were expanded by interleukin-15 in vitro and manifested suppressive function
指導教授:郭敏玲郭敏玲引用關係
指導教授(外文):Ming-Ling Kuo
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:59
中文關鍵詞:介白素15臍帶血成人周邊血調節性T細胞
外文關鍵詞:interleukin-15umbilical cord bloodadult peripheral bloodregulatory T cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
調節性 T 細胞 (regulatory T cells) 為 T 細胞中具有免疫抑制功能的一亞群,同時扮演維持免疫系統自體耐受性 (self-tolerance) 的角色。初步發現,存在於成人周邊血 (adult peripheral blood) 中的人類調節性 T 細胞,表現 CD4 分子與高量 IL-2 受體  次單元 (CD25; CD4+CD25high)。近年來的報告顯示人類臍帶血 (umbilical cord blood) 中這一群細胞比例較多,可作為良好的調節性 T 細胞的來源。前人的報導顯示,體外培養調節性 T 細胞在外加 IL-2 的條件之下,可以增加調節性T 細胞的數目。但是因為 IL-2 容易使得活化的 T 細胞凋亡 (activation induced cell death),而 IL-15 則較不易。為了提高人類臍帶血調節性 T 細胞的應用性,本論文利用希望藉由 IL-15 的幫助在體外培養並增加人類臍帶血調節性 T 細胞的數量。本論文發現受 IL-15 刺激增生的臍帶血及成人周邊血中 CD4+CD25+ T 細胞,呈現與 IL-2 刺激的臍帶血及成人周邊血CD4+CD25+ T 細胞相似的外表型。相較於成人周邊血 CD4+CD25+ T 細胞,於體外刺激增生的臍帶血 CD4+CD25+ T 細胞分泌較高量的 TGF-。在體外受到刺激增生的 CD4+CD25+ T 細胞能夠抑制同種異體的成人CD4+ T 細胞的增生以及IFN- 的分泌。儘管在 1/1 抑制/反應細胞的比例之下,體外增生的臍帶血 CD4+CD25+ T 細胞呈現較成人周邊血 CD4+CD25+ T 細胞更高的抑制能力,但是在 1/8 抑制/反應細胞的比例下兩者都會失去抑制功能。本論文發現無論是臍帶血或成人周邊血,在體外受到 IL-15 刺激增生的 CD4+CD25+ T 細胞與前人報導受到 IL-2 刺激增生的 CD4+CD25+ T 細胞一致,都需要透過細胞與細胞之間的作用達成其抑制效果。本研究提出了在體外受到 IL-2 或 IL-15 刺激增生的臍帶血 CD4+CD25+ T 細胞,相較於成人血 CD4+CD25+ T 細胞具有更高的免疫抑制功能,因此可作為調節性 T 細胞的來源的證據。在體外刺激增的 CD4+CD25+ T 細胞或許可以進一步應用於自體免疫疾病的治療。
Regulatory T (Treg) cells are a subpopulation of T cells with immunosuppressive function and play a pivotal role in the maintenance of self-tolerance. Human Treg cells were primarily defined by the expression of CD4 molecules together with intensive expression of interleukin (IL)-2 receptor  chains (CD25; CD4+CD25high) from adult peripheral blood (APB). Umbilical cord blood (UCB) has recently been reported to be a good source for Treg cells. Although exogenous IL-2 was required for the expansion of Treg cells in vitro, the presence of IL-2 usually induces activation induced cell death (AICD) during T cell activation. IL-15, however, has similar potent to activate T cells with less effect on AICD. For potential usage of UCB Treg cells, we applied IL-15 as well as IL-2 to expand CD4+CD25+ cells in vitro. The phenotypes of IL-15 expanded CD4+CD25+ cells were similar to IL-2 expanded CD4+CD25+ cells in both UCB and APB. However, in vitro expanded UCB CD4+CD25+ cells secreted higher level of TGF- than APB. The in vitro expanded CD4+CD25+ cells suppressed the proliferation of allogeneic adult CD4+ cells and reduced the accumulation of IFN-. Despite, the UCB CD4+CD25+ cells exerted higher suppressive activity than APB CD4+CD25+ cells at 1/1 suppressor-responder ratio. Both cell populations lost their suppressive function at 1/8 suppressor-responder ratio. The suppressive function of both IL-2 and IL-15 expanded CD4+CD25+ cells were mediated through cell-cell contact manners. These evidences supported that UCB CD4+CD25+ cells with IL-2 or IL-15 treatment will be a feasible source of Treg cells for the therapy of autoimmune disorders.
指導教授推薦書 …………………………………………………………口試委員會審定書 ………………………………………………………授權書 ………………………………………………………………... iii 中文摘要 ……………………………………………………………... iv
英文摘要 ……………………………………………………………… v 誌謝 …………………………………………………………………... vi

Introduction …………………………………………………………… 1
Application of umbilical cord blood ……………………………….. 1
Regulatory T cells ………………………………………………….. 2
Interleukin-15 …………………………….………………………… 5
Materials and Methods ………………………………………………... 8
Magnetic cell sorting (MACS) purification of CD25+ and CD25- from CD4+ T cells ………………………………………………………... 8
The culture of UCB and APB CD4+CD25+ cells …………………... 9
The proliferation of CD4+CD25+ and CD4+CD25- cells ………….. 10
Antibodies and flow cytometry …………………………………… 11
Cytokine analysis by ELISA ……………………………………… 13
Suppressive function assay ……………………………………….. 15
Statistical analysis ………………………………………………… 17

Results ………………………………………………………………. 18
Enriched UCB CD4+CD25+ T cells contained more CD25high and FoxP3+ cells than enriched APB CD4+CD25+ cells ……………… 18
UCB and APB CD4+CD25+ T cells were expanded by TCR and CD28 signaling in the presence of exogenous IL-2 and IL-15 in vitro …. 19
Exogenous IL-2 and IL-15 contributed to the living cells percentage of expanded UCB and APB CD4+CD25+ T cells …………………… 20
Exogenous IL-2 and IL-15 promoted the proliferation of UCB and APB CD4+CD25+ T cells …………………………………………. 21
IL-2 and IL-15 promoted the phenotypes of in vitro expanded CD4+CD25+ T cells to Treg cells like ……………………………… 22
In vitro expanded UCB CD4+CD25+ cells expressed higher TGF- but lower IL-10 than expanded APB CD4+CD25+ cells …………….... 23
In vitro expanded CD4+CD25+ cells suppressed the proliferation of allogeneic adult CD4+ T cells …………………………………….. 24
In vitro expanded CD4+CD25+ cells reduced the interferon (IFN)- production of allogeneic adult CD4+ T cells ……………………… 26
In vitro expanded UCB CD4+CD25+ T cells exerted higher suppressive activity than APB CD4+CD25+ T cells ………………………..….. 27 TRIL-15 cells inhibited the proliferation of responder cells through cell contact-dependent manner as well as TRIL-2 cells …………………. 28

Discussion ……………………………………………………………. 29

Table and Figures …………………………………………………….. 36
Table 1. The summary of Treg cells associated characteristics of in vitro expanded UCB and APB CD4+CD25+ T cells …………………….. 36
Fig. 1 UCB and APB CD4+CD25+ cells were enriched from peripheral blood mononuclear cells (PBMCs) ………………………………... 37
Fig. 2 Exogenous IL-2 and IL-15 contributed to the expansion of UCB and APB CD4+CD25+ cells in vitro ……………………………….. 39
Fig. 3 The exogenous IL-2 and IL-15 enhanced the survivals of expanded UCB and APB CD4+CD25+ T cells in vitro ……………. 40
Fig. 4 Exogenous IL-2 and IL-15 promoted the proliferation of CD4+CD25+ T cells in vitro ……………………………………….. 42
Fig. 5 Exogenous IL-2 and IL-15 increased the expression of Treg cells related markers on in vitro expanded UCB and APB CD4+CD25+ T cells ………………………………………………………………... 44
Fig. 6 Both exogenous IL-2 and IL-15 increased the production of IL-10 from either UCB or APB CD4+CD25+ T cells and expanded UCB CD4+CD25+ T cells secreted higher TGF- than APB ……… 46
Fig. 7 In vitro expanded UCB and APB CD4+CD25+ T cells suppressed the proliferation of allogeneic adult CD4+ T cells ………………… 47
Fig. 8 In vitro expanded UCB CD4+CD25+ T cells suppressed the proliferation of allogeneic adult CD4+ T cells substantially and also APB CD4+CD25+ T cells slightly ………………………………… 48
Fig. 9 The production of interferon- from allogeneic adult CD4+ cells was inhibited by in vitro expanded UCB and APB CD4+CD25+ but not CD4+CD25- cells …………………………………………………. 49
Fig. 10 In vitro expanded UCB CD4+CD25+ T cells exerted higher suppressive activities than APB ………………………………….. 50
Fig. 11 Both UCB (A) and APB (B) TRIL-15 cells as well as TRIL-2 cells suppressed the proliferation of responders through cell contact-dependent manners ………………………………………. 51

Reference ……………………………………………………………. 52
Ahmadzadeh, M. and Rosenberg, S. A. (2006). IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409-2414.
Alpdogan, O. and van den Brink, M. R. (2005). IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol 26, 56-64.
Annacker, O., Pimenta-Araujo, R., Burlen-Defranoux, O., Barbosa, T. C., Cumano, A., and Bandeira, A. (2001). CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 166, 3008-3018.
Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L., and Powrie, F. (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190, 995-1004.
Bacchetta, R., Sartirana, C., Levings, M. K., Bordignon, C., Narula, S., and Roncarolo, M. G. (2002). Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol 32, 2237-2245.
Baecher-Allan, C., Brown, J. A., Freeman, G. J., and Hafler, D. A. (2001). CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167, 1245-1253.
Berard, M., Brandt, K., Bulfone-Paus, S., and Tough, D. F. (2003). IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 170, 5018-5026.
Bulfone-Pau, S. S., Bulanova, E., Pohl, T., Budagian, V., Durkop, H., Ruckert, R., Kunzendorf, U., Paus, R., and Krause, H. (1999). Death deflected: IL-15 inhibits TNF-alpha-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Ralpha chain. Faseb J 13, 1575-1585.
Bulfone-Paus, S., Ungureanu, D., Pohl, T., Lindner, G., Paus, R., Ruckert, R., Krause, H., and Kunzendorf, U. (1997). Interleukin-15 protects from lethal apoptosis in vivo. Nat Med 3, 1124-1128.
Dieckmann, D., Plottner, H., Berchtold, S., Berger, T., and Schuler, G. (2001). Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193, 1303-1310.
Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336.
Fontenot, J. D., and Rudensky, A. Y. (2005). A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6, 331-337.
Fritzsching, B., Oberle, N., Eberhardt, N., Quick, S., Haas, J., Wildemann, B., Krammer, P. H., and Suri-Payer, E. (2005). In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol 175, 32-36.
Fuss, I. J., Boirivant, M., Lacy, B., and Strober, W. (2002). The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol 168, 900-908.
Giri, J. G., Kumaki, S., Ahdieh, M., Friend, D. J., Loomis, A., Shanebeck, K., DuBose, R., Cosman, D., Park, L. S., and Anderson, D. M. (1995). Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. Embo J 14, 3654-3663.
Gluckman, E. (2000). Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp Hematol 28, 1197-1205.
Godfrey, W. R., Ge, Y. G., Spoden, D. J., Levine, B. L., June, C. H., Blazar, B. R., and Porter, S. B. (2004). In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104, 453-461.
Godfrey, W. R., Spoden, D. J., Ge, Y. G., Baker, S. R., Liu, B., Levine, B. L., June, C. H., Blazar, B. R., and Porter, S. B. (2005). Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 105, 750-758.
Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., and et al. (1994). Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965-968.
Groux, H. (2003). Type 1 T-regulatory cells: their role in the control of immune responses. Transplantation 75, 8S-12S.
Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R., and Edinger, M. (2004). Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 104, 895-903.
Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
Jonuleit, H. and Schmitt, E. (2003). The regulatory T cell family: distinct subsets and their interrelations. J Immunol 171, 6323-6327.
Jonuleit, H., Schmitt, E., Stassen, M., Tuettenberg, A., Knop, J., and Enk, A. H. (2001). Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193, 1285-1294.
Khattri, R., Cox, T., Yasayko, S. A., and Ramsdell, F. (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4, 337-342.
Koenen, H. J., Fasse, E., and Joosten, I. (2003). IL-15 and cognate antigen successfully expand de novo-induced human antigen-specific regulatory CD4+ T cells that require antigen-specific activation for suppression. J Immunol 171, 6431-6441.
Konno, S., Asano, K., Okamoto, K., and Adachi, M. (1994). Inhibition of cytokine production from human peripheral blood leukocytes by anti-allergic agents in vitro. Eur J Pharmacol 264, 265-268.
Levings, M. K., Bacchetta, R., Schulz, U., and Roncarolo, M. G. (2002). The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 129, 263-276.
Levings, M. K., Sangregorio, R., and Roncarolo, M. G. (2001). Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193, 1295-1302.
Li, L., Godfrey, W. R., Porter, S. B., Ge, Y., June, C. H., Blazar, B. R., and Boussiotis, V. A. (2005). CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood 106, 3068-3073.
Lin, S. J., Cheng, P. J., Hsiao, S. S., Lin, H. H., Hung, P. F., and Kuo, M. L. (2005). Differential effect of IL-15 and IL-2 on survival of phytohemagglutinin-activated umbilical cord blood T cells. Am J Hematol 80, 106-112.
Lin, S. J., Yu, J. C., Cheng, P. J., Hsiao, S. S., and Kuo, M. L. (2003). Effect of interleukin-15 on anti-CD3/anti-CD28 induced apoptosis of umbilical cord blood CD4+ T cells. Eur J Haematol 71, 425-432.
Lodolce, J. P., Boone, D. L., Chai, S., Swain, R. E., Dassopoulos, T., Trettin, S., and Ma, A. (1998). IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669-676.
Mahic, M., Yaqub, S., Johansson, C. C., Tasken, K., and Aandahl, E. M. (2006). FOXP3+CD4+CD25+ Adaptive Regulatory T Cells Express Cyclooxygenase-2 and Suppress Effector T Cells by a Prostaglandin E2-Dependent Mechanism. J Immunol 177, 246-254.
McHugh, R. S., Shevach, E. M., and Thornton, A. M. (2001). Control of organ-specific autoimmunity by immunoregulatory CD4(+)CD25(+) T cells. Microbes Infect 3, 919-927.
McHugh, R. S., Whitters, M. J., Piccirillo, C. A., Young, D. A., Shevach, E. M., Collins, M., and Byrne, M. C. (2002). CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311-323.
Nakamura, K., Kitani, A., Fuss, I., Pedersen, A., Harada, N., Nawata, H., and Strober, W. (2004). TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172, 834-842.
Nakamura, K., Kitani, A., and Strober, W. (2001). Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194, 629-644.
O'Garra, A. and Vieira, P. (2003). Twenty-first century Foxp3. Nat Immunol 4, 304-306.
Ramsdell, F. and Ziegler, S. F. (2003). Transcription factors in autoimmunity. Curr Opin Immunol 15, 718-724.
Rao, P. E., Petrone, A. L., and Ponath, P. D. (2005). Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{beta}. J Immunol 174, 1446-1455.
Read, S., Malmstrom, V., and Powrie, F. (2000). Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192, 295-302.
Roncarolo, M. G., Bacchetta, R., Bordignon, C., Narula, S., and Levings, M. K. (2001). Type 1 T regulatory cells. Immunol Rev 182, 68-79.
Sakaguchi, S. (2004). Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562.
Sakaguchi, S., Sakaguchi, N., Shimizu, J., Yamazaki, S., Sakihama, T., Itoh, M., Kuniyasu, Y., Nomura, T., Toda, M., and Takahashi, T. (2001). Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182, 18-32.
Shevach, E. M. (2002). CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2, 389-400.
Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., and Sakaguchi, S. (2002). Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3, 135-142.
Suen, Y., Lee, S. M., Qian, J., van de Ven, C., and Cairo, M. S. (1998). Dysregulation of lymphokine production in the neonate and its impact on neonatal cell mediated immunity. Vaccine 16, 1369-1377.
Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T. W., and Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192, 303-310.
Takahata, Y., Nomura, A., Takada, H., Ohga, S., Furuno, K., Hikino, S., Nakayama, H., Sakaguchi, S., and Hara, T. (2004). CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol 32, 622-629.
Wagner, J. E., Kernan, N. A., Steinbuch, M., Broxmeyer, H. E., and Gluckman, E. (1995). Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet 346, 214-219.
Watson, W., Oen, K., Ramdahin, R., and Harman, C. (1991). Immunoglobulin and cytokine production by neonatal lymphocytes. Clin Exp Immunol 83, 169-174.
Weiner, H. L. (2001a). Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182, 207-214.
Weiner, H. L. (2001b). The mucosal milieu creates tolerogenic dendritic cells and T(R)1 and T(H)3 regulatory cells. Nat Immunol 2, 671-672.
Zelenika, D., Adams, E., Humm, S., Lin, C. Y., Waldmann, H., and Cobbold, S. P. (2001). The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. Immunol Rev 182, 164-179.
Zhang, X., Sun, S., Hwang, I., Tough, D. F., and Sprent, J. (1998). Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591-599.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔