跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹政己
研究生(外文):Cheng-Chi Chan
論文名稱:探討Interleukin-31在Ovalbumin老鼠過敏機制中可能扮演的角色
論文名稱(外文):To investigate the role of interleukin-31 in ovalbumin-induced airway hyper-responsive mice
指導教授:郭敏玲郭敏玲引用關係
指導教授(外文):Ming-Ling Kuo
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:67
外文關鍵詞:asthmainterleukin-31Th2 cytokineinterleukin-31 receptor a
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過敏性氣喘是一種慢性的支氣管發炎疾病,一般認為,具有過敏體質的人對於吸入特定的過敏原會產生不正常的免疫反應。過去的研究發現,第二型T輔助細胞(Th2細胞)被認為是主要的調控者,Th2細胞所產生的細胞激素IL-4、IL-5、IL-13在引起氣喘的病發過程中扮演重要的角色,這些Th2細胞激素會導致肥大細胞和嗜酸性白血球的分化與活化,並且吸引這些發炎細胞到支氣管和肺臟,這些活化的發炎細胞會分泌大量的發炎調控因子進而引起支氣管阻塞、呼吸道過度反應和發炎,而導致氣喘。最近,一個新的four-helix bundle細胞激素IL-31被發現,主要由活化的T細胞所分泌;其中,特別是Th2細胞的表現量比Th1細胞來得多。在以皮下注射IL-31蛋白質的小鼠中發現,過度地表現IL-31會出現類似皮膚炎的病徵,而臨床上,幾乎80%患有異位性皮膚炎的小孩將來都可能發展成過敏性鼻炎和氣喘。IL-31的訊息主要是透過IL-31 receptor A (IL-31 RA)和oncostatin M receptor (OSMR)所形成的heterodimeric receptor所傳遞。不過,目前對IL-31詳細的生物功能還不是十分清楚;但除了在上皮細胞和角質細胞上固定表現有IL-31 receptor,利用ovalbumin (OVA)致敏的小鼠當中,在肺臟、肺臟上皮細胞和肺泡沖洗液細胞中也有較高的IL-31 RA mRNA的表現。
因此,我們想評估是否IL-31在氣喘發病的過程中扮演重要的角色。首先,我們從活化的T細胞中clone到IL-31 cDNA並且建構到pcDNA3.1真核表現載體中,利用肌肉注射方式分別在第0天和第7天,將pcDNA3.1/mIL-31打入到正常的小鼠中,結果發現,在施打IL-31的老鼠的肺泡沖洗液中有大量T細胞浸潤的現象。我們進一步利用ovalbumin作為過敏原的小鼠氣喘模式,探討IL-31在氣喘過程中可能扮演的角色,同樣利用肌肉注射的方式分別在致敏流程第13天和第20天,將pcDNA3.1/mIL-31打入到OVA致敏的小鼠中。小鼠犧牲後,抽取肺臟與肺泡沖洗液細胞的mRNA,利用RT-PCR分析IL-31和receptors在OVA致敏小鼠中的表現量,以ELISA方式定量血清中OVA專一性抗體和OVA刺激脾臟細胞所分泌的Th2細胞激素。結果發現,IL-31和OSMR在對照組和OVA致敏小鼠中的表現量沒有明顯的差異,而IL-31 RA在OVA致敏小鼠的肺泡沖洗液細胞和肺臟中有明顯較高的表現量。血清抗體方面,OVA致敏小鼠與對照組比較發現,OVA專一性抗體的量沒有顯著增加的情形,而OVA刺激脾臟細胞培養部分,在施打IL-31的OVA致敏小鼠中,Th2細胞激素的表現量明顯地比對照組來得高。根據這些結果,我們目前假設在OVA致敏小鼠中,IL-31主要是透過高表現量的IL-31 RA傳遞訊息進而加重氣喘的發病情形。
Asthma is a complex pulmonary inflammatory disease. Generally, it is believed that the susceptible individuals have an abnormal immune response to inhaled allergens. According to the previous studies, Th2 cells and their cytokines, IL-4, IL-5, and IL-13 play a pivotal role in the pathogenesis of asthma. These Th2 cytokines cause the differentiation, recruitment, and activation of the mast cells and eosinophils in the airway mucosa. Activation of these cells releases a large number of proinflammatory mediators which induce bronchial obstruction, airway hyper-responsiveness, and airway inflammation. Recently, a novel four-helix bundle cytokine, IL-31, has been identified. IL-31 is expressed mainly by activated T cells, produced particularly in larger amount in Th2 than Th1 cells. IL-31 induces similar symptoms of dermatitis in mice. Clinically, nearly 80% children with atopic dermatitis develop allergic rhinitis or asthma. IL-31 signals via the heterodimeric receptor complex composed of IL-31 RA and OSMR. However, the exact biological functions of IL-31 aren’t fully understood. Besides in epithelial cells and keratinocytes, IL-31 receptors are up-regulated in lung epithelium and bronchoalveolar lavage cells from an animal model of OVA-challenged airway hyper-responsiveness. Thus, we would like to evaluate whether IL-31 plays a role in the pathogenesis of asthma. We first cloned IL-31 cDNA from activated splenocytes and constructed into the eukaryotic pcDNA3.1/mIL-31 expression vector. Normal mice were injected intramuscularly by pcDNA3.1/mIL-31 at days 0 and 7. Increased numbers of lymphocytes in BALF were significantly detected from IL-31 administrated mice. We further used OVA as an allergen to induce an asthmatic animal model; the sensitized mice were injected intramuscularly by pcDNA3.1/mIL-31 at days 13 and 20. The expression of IL-31 and receptor genes in BALF cells and lung tissues of OVA-sensitized mice was analyzed by RT-PCR. The OVA-specific antibody from serum and Th2 cytokines from OVA-treated splenocytes were quantified by ELISA. Nevertheless, the levels of IL-31 and OSMR in lung tissues between normal mice and OVA-sensitized mice were not different. IL-31 RA in the lung tissues and BALF cells of OVA-sensitized mice expressed significantly higher levels than normal mice. The titers of OVA-specific antibody between normal and OVA-sensitized mice were not different. Elevated Th2 cytokines were expressed in splenocytes of pcDNA3.1/mIL-31 injected OVA-sensitized mice. Our data suggest that IL-31 may enhance the pathogenesis of asthma through higher expression of IL-31 RA in OVA-sensitized mice
Contents

Acknowledgements…………………………………………………...i
Abstract (Chinese)…...………………………………………………ii
Abstract (English)…………………………………………………...iv
Contents………………………………………………………………..vi


 CHAPTER I Introduction…………………………………...1
1.1 T helper cells and cytokines in asthma……………………….4
1.2 Interleukin-31 and receptors………………………………….7

 CHAPTER II Materials and Methods…………………..11
2.1 Gene cloning…………………………………………………..11
2.2 Animal study………………………………………………….18

 CHAPTER III Results...…………………………………….25
3.1 The cloning of mouse IL-31 gene.............................................25
3.2 The percentage of lymphocyte in BALF of normal mice
that injected intramuscularly with pcDAN3.1/mIL-31 plasmid DNA………………………………………………….25
3.3 The airway hyper-responsiveness of OVA-sensitized mice...26
3.4 The percentage of eosinophils in BALF……………………..27
3.5 OVA-specific antibody in mice serum………………………27
3.6\ Th2 cytokines in culture supernatant of OVA-sensitized mice……………………………………..……………………28
3.7 The expression of mIL-31, mIL-31 RA and OSMR mRNA in whole lung tissues and BALF cells of OVA-sensitized mice..29
3.8 The expression of mIL-31 recombinant protein in BL21 (DE3) cells with pET29a(+)/mIL-31………………………………...30

 Chapter IV Discussion............................................................32

 Chapter V Futurework……………………...........................36

 References..………………………………………………………37

 Tables and Figures………………………………………..……45
Reference

Atkinson, R. W., Anderson, H. R., Sunyer, J., Ayres, J., Baccini, M., Vonk, J. M., Boumghar, A., Forastiere, F., Forsberg, B., Touloumi, G., et al. (2001). Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach. Am J Respir Crit Care Med 164, 1860-1866.

Bishop, B., and Lloyd, C. M. (2003). CC chemokine ligand 1 promotes recruitment of eosinophils but not Th2 cells during the development of allergic airways disease. J Immunol 170, 4810-4817.

Brusselle, G., Kips, J., Joos, G., Bluethmann, H., and Pauwels, R. (1995). Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 12, 254-259.

Campbell, H. D., Tucker, W. Q., Hort, Y., Martinson, M. E., Mayo, G., Clutterbuck, E. J., Sanderson, C. J., and Young, I. G. (1987). Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5). Proc Natl Acad Sci U S A 84, 6629-6633.

Coyle, A. J., Le Gros, G., Bertrand, C., Tsuyuki, S., Heusser, C. H., Kopf, M., and Anderson, G. P. (1995). Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am J Respir Cell Mol Biol 13, 54-59.

Dillon, S. R., Sprecher, C., Hammond, A., Bilsborough, J., Rosenfeld-Franklin, M., Presnell, S. R., Haugen, H. S., Maurer, M., Harder, B., Johnston, J., et al. (2004). Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5, 752-760.

Diveu, C., Lak-Hal, A. H., Froger, J., Ravon, E., Grimaud, L., Barbier, F., Hermann, J., Gascan, H., and Chevalier, S. (2004). Predominant expression of the long isoform of GP130-like (GPL) receptor is required for interleukin-31 signaling. Eur Cytokine Netw 15, 291-302.

Dreuw, A., Radtke, S., Pflanz, S., Lippok, B. E., Heinrich, P. C., and Hermanns, H. M. (2004). Characterization of the signaling capacities of the novel gp130-like cytokine receptor. J Biol Chem 279, 36112-36120.

Finkelman, F. D., Katona, I. M., Urban, J. F., Jr., Holmes, J., Ohara, J., Tung, A. S., Sample, J. V., and Paul, W. E. (1988). IL-4 is required to generate and sustain in vivo IgE responses. J Immunol 141, 2335-2341.

Foster, P. S., Hogan, S. P., Ramsay, A. J., Matthaei, K. I., and Young, I. G. (1996). Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183, 195-201.

Gavett, S. H., O'Hearn, D. J., Karp, C. L., Patel, E. A., Schofield, B. H., Finkelman, F. D., and Wills-Karp, M. (1997). Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am J Physiol 272, L253-261.

Georas, S. N., Guo, J., De Fanis, U., and Casolaro, V. (2005). T-helper cell type-2 regulation in allergic disease. Eur Respir J 26, 1119-1137.

Gerblich, A. A., Salik, H., and Schuyler, M. R. (1991). Dynamic T-cell changes in peripheral blood and bronchoalveolar lavage after antigen bronchoprovocation in asthmatics. Am Rev Respir Dis 143, 533-537.

Gonzalo, J. A., Lloyd, C. M., Kremer, L., Finger, E., Martinez, A. C., Siegelman, M. H., Cybulsky, M., and Gutierrez-Ramos, J. C. (1996). Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. J Clin Invest 98, 2332-2345.

Gonzalo, J. A., Pan, Y., Lloyd, C. M., Jia, G. Q., Yu, G., Dussault, B., Powers, C. A., Proudfoot, A. E., Coyle, A. J., Gearing, D., and Gutierrez-Ramos, J. C. (1999). Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J Immunol 163, 403-411.

Grunig, G., Warnock, M., Wakil, A. E., Venkayya, R., Brombacher, F., Rennick, D. M., Sheppard, D., Mohrs, M., Donaldson, D. D., Locksley, R. M., and Corry, D. B. (1998). Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261-2263.

Hsieh, C. S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O'Garra, A., and Murphy, K. M. (1993). Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547-549.

Kawasaki, S., Takizawa, H., Yoneyama, H., Nakayama, T., Fujisawa, R., Izumizaki, M., Imai, T., Yoshie, O., Homma, I., Yamamoto, K., and Matsushima, K. (2001). Intervention of thymus and activation-regulated chemokine attenuates the development of allergic airway inflammation and hyperresponsiveness in mice. J Immunol 166, 2055-2062.

Leung, D. Y., and Bieber, T. (2003). Atopic dermatitis. Lancet 361, 151-160.

Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I., and Hamid, Q. A. (2004). New insights into atopic dermatitis. J Clin Invest 113, 651-657.

Lloyd, C. M., and Rankin, S. M. (2003). Chemokines in allergic airway disease. Curr Opin Pharmacol 3, 443-448.

Locksley, R. M. (1994). Th2 cells: help for helminths. J Exp Med 179, 1405-1407.

Madden, K. B., Urban, J. F., Jr., Ziltener, H. J., Schrader, J. W., Finkelman, F. D., and Katona, I. M. (1991). Antibodies to IL-3 and IL-4 suppress helminth-induced intestinal mastocytosis. J Immunol 147, 1387-1391.

Martinez, F. D., Stern, D. A., Wright, A. L., Holberg, C. J., Taussig, L. M., and Halonen, M. (1995). Association of interleukin-2 and interferon-gamma production by blood mononuclear cells in infancy with parental allergy skin tests and with subsequent development of atopy. J Allergy Clin Immunol 96, 652-660.

McCunney, R. J. (2005). Asthma, genes, and air pollution. J Occup Environ Med 47, 1285-1291.

McFadden, E. R., Jr., and Gilbert, I. A. (1992). Asthma. N Engl J Med 327, 1928-1937.

Metcalfe, D. D., Baram, D., and Mekori, Y. A. (1997). Mast cells. Physiol Rev 77, 1033-1079.

O'Byrne, P. M., Inman, M. D., and Adelroth, E. (2004). Reassessing the Th2 cytokine basis of asthma. Trends Pharmacol Sci 25, 244-248.

Panina-Bordignon, P., Papi, A., Mariani, M., Di Lucia, P., Casoni, G., Bellettato, C., Buonsanti, C., Miotto, D., Mapp, C., Villa, A., et al. (2001). The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 107, 1357-1364.
Postma, D. S., Bleecker, E. R., Amelung, P. J., Holroyd, K. J., Xu, J., Panhuysen, C. I., Meyers, D. A., and Levitt, R. C. (1995). Genetic susceptibility to asthma--bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 333, 894-900.

Rosenwasser, L. J., Klemm, D. J., Dresback, J. K., Inamura, H., Mascali, J. J., Klinnert, M., and Borish, L. (1995). Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin Exp Allergy 25 Suppl 2, 74-78; discussion 95-76.

Sanderson, C. J. (1990). The biological role of interleukin 5. Int J Cell Cloning 8 Suppl 1, 147-153; discussion 153-144.

Schleimer, R. P., Sterbinsky, S. A., Kaiser, J., Bickel, C. A., Klunk, D. A., Tomioka, K., Newman, W., Luscinskas, F. W., Gimbrone, M. A., Jr., McIntyre, B. W., and et al. (1992). IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148, 1086-1092.

Schuh, J. M., Blease, K., Kunkel, S. L., and Hogaboam, C. M. (2003). Chemokines and cytokines: axis and allies in asthma and allergy. Cytokine Growth Factor Rev 14, 503-510.

Schulz, O., Sewell, H. F., and Shakib, F. (1998). Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J Exp Med 187, 271-275.

Sears, M. R., Burrows, B., Flannery, E. M., Herbison, G. P., and Holdaway, M. D. (1993). Atopy in childhood. I. Gender and allergen related risks for development of hay fever and asthma. Clin Exp Allergy 23, 941-948.

Seder, R. A., Paul, W. E., Davis, M. M., and Fazekas de St Groth, B. (1992). The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 176, 1091-1098.

Turner, H., and Kinet, J. P. (1999). Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 402, B24-30.

Van Oosterhout, A. J., Ladenius, A. R., Savelkoul, H. F., Van Ark, I., Delsman, K. C., and Nijkamp, F. P. (1993). Effect of anti-IL-5 and IL-5 on airway hyperreactivity and eosinophils in guinea pigs. Am Rev Respir Dis 147, 548-552.

Wan, H., Winton, H. L., Soeller, C., Tovey, E. R., Gruenert, D. C., Thompson, P. J., Stewart, G. A., Taylor, G. W., Garrod, D. R., Cannell, M. B., and Robinson, C. (1999). Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104, 123-133.

Wardlaw, A. J., Dunnette, S., Gleich, G. J., Collins, J. V., and Kay, A. B. (1988). Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis 137, 62-69.

Weller, P. F., Lim, K., Wan, H. C., Dvorak, A. M., Wong, D. T., Cruikshank, W. W., Kornfeld, H., and Center, D. M. (1996). Role of the eosinophil in allergic reactions. Eur Respir J Suppl 22, 109s-115s.

Wills-Karp, M. (1999). Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 17, 255-281.

Wills-Karp, M. (2004). Interleukin-13 in asthma pathogenesis. Immunol Rev 202, 175-190.

Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T. Y., Karp, C. L., and Donaldson, D. D. (1998). Interleukin-13: central mediator of allergic asthma. Science 282, 2258-2261.

Yu, P., Kosco-Vilbois, M., Richards, M., Kohler, G., and Lamers, M. C. (1994). Negative feedback regulation of IgE synthesis by murine CD23. Nature 369, 753-756.

Zimmermann, N., Hershey, G. K., Foster, P. S., and Rothenberg, M. E. (2003). Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol 111, 227-242; quiz 243.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top