跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳君豪
研究生(外文):Chun-Hao Chen
論文名稱:大鼠視叉上核神經元的酸敏感性離子通道
論文名稱(外文):Acid-sensing Ion Channels in the Rat Suprachiasmatic Nucleus Neurons
指導教授:黃榮棋黃榮棋引用關係
指導教授(外文):Rong-Chi Huang
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:視叉上核酸敏感性離子通道電生理視叉上核鈉離子機械性細胞膜蛋白質
外文關鍵詞:Acid-sensing Ion ChannelsSuprachiasmatic NucleusASICSCN
相關次數:
  • 被引用被引用:1
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在中樞神經系統及周邊神經系統發現由酸所活化的電流目前已經歸類為酸敏感性離子通道蛋白質家族所產生。在周邊神經系統裡,酸敏感性離子通道的生理功能主要與痛覺、機械性感覺以及味覺的傳遞有關。然而在中樞神經系統裡,其所扮演的生理功能仍然不清楚。在本實驗裡利用大鼠視叉上核細胞及電生理的方法,發現視叉上核細胞的確實有一種會被酸所活化的ASIC電流。
根據RT-PCR的實驗結果,在視叉上核細胞有表現ASIC 1a、ASIC 2a、ASIC 2b及ASIC 3的mRNA。電生理的實驗則是說明此一電流主要是被細胞外的酸所活化的鈉離子電流,且具有快速去敏化的特性。在藥物學上此種酸所活化的鈉離子電流會對Amiloride具有敏感性,但不會由capsaicin所活化。乳酸及glutathione會增強其電流大小,而DTNB及二價鉛離子會抑制其電流。在生理的角度上,快速給予pH6.4的酸會使細胞膜電位持續去極化並產生密集性的動作電位。因此,ASIC通道可能在中樞神經系統裡的視叉上核細胞扮演著重要的角色。
The conduction of acid-evoked currents in central and sensory neurons is now primarily attributed to a family of proteins called acid-sensing ion channels (ASICs). In peripheral neurons, their physiological function has been linked to nociception, mechanoreception,and taste transduction; however, their role in the CNS remains unclear. This study describes the discovery of a proton-gated current in rat suprachiasmatic nucleus (SCN) termed INa(H+) , which also appears to be mediated by ASICs. RT-PCR confirmed the presence of ASIC mRNA(subunits la,2a,2b,3) in the rat SCN. Electrophysiological investigation showed that all SCN cells respond to rapid extracellular acidification with the activation of a transient Na+ current. INa(H+) desensitizes completely in the continued presence of acid, its current–voltage relationship is linear and its reversal potential shifts with ENa. INa(H+) is reversibly inhibited by amiloride but is not activated by capsaicin . INa(H+) is potentiated by lactate or glutathione but is inhibited by DTNB or Pb2+. Acute application ofpH6.4 to SCN cells causes sustained depolarization and repetitive firing similar to the trains of spontaneous firing rate in these cells. The presence of a proton-gated current in the SCN suggests that ASICs may have a more diverse role in the CNS.
指導教授推薦書………………………………………………………
口試委員會審定書……………………………………………………
長庚大學授權書………………………………………………………iii
誌謝…………………………………………………………………… iv
中文摘要……………………………………………………………… v
英文摘要……………………………………………………………… vi
圖表目錄……………………………………………………………… vii
第一章 序論………………………………………………………… 1
一.視叉上核……………………………………………………… 1
二.能量代謝……………………………………………………… 5
三.酸敏感性離子通道…………………………………………… 10
第二章 實驗材料與方法…………………………………………… 33
第三章 實驗結果…………………………………………………… 41
第四章 討論………………………………………………………… 56
參考文獻……………………………………………………………… 80
Alberti KG and Cuthbert C. The hydrogen ion in normal metabolism: a review. Ciba Found Symp 87: 1–19, 1982.

Alvarez de la Rosa, D., Zhang, P., Shao, D., White, F., Canessa,C.M.: Functional implications of the localization and activity of acid-sensitive channels in r at peripheral nervous system. Proc Natl Acad Sci 99:2326-2331, 2002.

Baron, A.,Waldmann, R., and Lazdunski, M.: ASIC-like, proton-activated currents in rat hippocampal .neurons. Journal of Physiology 539.2 :485–494,2002

Bassler, E. L., Ngo-Anh, T. J., Geisler, H. S., Ruppersberg, J. P., and Grunder, S.: Molecular and functional characterization of acid-sensing ion channel (ASIC) lb. J Biol Chem 276:33782-33787, 2001.

Benson, C. J., Eckert, S. P., and Mccleskey, E. W.: Acid-evoked currents in cardiac sensory neurons. Circulation Research 84:921-928, 1999.

Benson, C. J., Xie, J., Wemmie, J. A., Price, M. P., Henss, J. M.,Welsh, M. J., and Snyder, P. M.: Heteromultimers of DEG/ENaC subunits form H-gated channels in mouse sensory neurons. Proc Natl Acad Sci 99:2338-2343, 2002.

Biagini, G., Babinski, K., Avoli, M., Marcinkiewicz, M., and Seguela,P.: Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis 8:45-58, 2001.

Binhai Zheng, Urs Albrecht, Krista Kaasik, Marijke Sage, Weiqin Lu, Sukeshi Vaishnav, Qiu Li, Zhong Sheng Sun, Gregor Eichele, Allan Bradley, and Cheng Chi Lee .:Nonredundant Roles of the mPer1 and mPer2 Genes in the Mammalian Circadian Clock.Cell 105:683,2001.

Brockway, L. M., Zhou, Z. H., Bubien, J. K., Jovov, B., Benos, D. J.,and Keyser, K. T.: Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 283:126-134,2002.

Candice, C., Askwith C. C., Wemmie, J. A., Margaret, P., Rokhlina,T., and Welsh, M. J.: ASIC2 modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296-18305, 2004.

Chen, C. C., England, S., Akopian, A. N., and Wood, J. N.' A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci 95:10240-10245, 1998.

Chesler M . The regulation and modulation of pH in the nervous system. Prog Neurobiol 34:401–427,1990.

Colwell CS, Menaker M NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. J Biol Rhythms 7:25–36,1992.

Coscoy, S., W eille, J., Lingueglia, E., and Lazdunski, E.: The pre-transmembrane 1 domain of acidsensing ion channels participates in the ion pore. J. Biol. Chem. 274:10129-10132, 1999.

Ding JM, Fairman LE, Hurst WJ, Kuriashkina LR, Gillette MU Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci17:667–675,1997.

Dmitriev AV and Mangel SC. A circadian clock regulates the pH of the fish retina. J Physiol 522: 77–82, 2000.

Dmitriev AV and Mangel SC. Circadian clock regulation of pH in the rabbit retina. J Neurosci 21: 2897–2902, 2001.

Duggan, A., Garcia-Anoveros, J., and Corey, D. P.: The PDZ domain protein PICK1 and the sodium channel BNaC1 interact.and localize at mechanosensory terminals of DRG neurons and dendrites of central neurons. Journal of Biological Chemistry 277:5203-5208,2002.

Garcia-Anoveros, J., Derfler, B., Neville-Golden, J., Hyman, B. T.,and Corey, D. P.: BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels Proc. Natl. Acad. Sci. 94:1459-1464, 1997.

Garcia-Anoveros, J., Samad, T. A., Woolf, C. J., andCorey,D.: Transport and localization of the DEG/ENaC ion channel BNaClα to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21:2678-2686, 2001.

Grunder, S., Geissler, H. S., Bassler, E. L., and Ruppersberg, J. P.' A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11:1607-1611, 2000.

Guldner FH, Wolff JR. Complex synaptic arrangements in the rat suprachiasmatic nucleus:apossible basis for the”Zeitgeber “ and non-synaptic synchronization of neuronal activity. Cell Tissue Res 284:203-214.

Hassel and A. Brathe. Cerebral metabolism of lactate in vivo:evidence for neuronal pyruvate carboxylation. J Cereb Blood Flow Metab 20, 327-336,2000.

Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4: 649–661,2003.

Hruska-Hageman, A. M., Wemmie, J. A., Price, M. P., and Welsh, M J.: Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC 1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). Biochemical Journal. 361:443-50, 2002.

Johnson, M. B., Jill, K. L., Minami, M., Chen D., and Simon. R. P. Global Ischemia Induces Expression of Acid-Sensing Ion Channel 2a in Rat Brain. Journal of Cerebral Blood Flow and Metabolism 21:734-740, 2001.

Jovov, B., Tousson, A., McMahon, L. L., Benos, D. J.: Immuno-localization of the acid-sensing ion channel 2a in the rat cerebellum. Histochem Cell Biol 119:437-446, 2003.

Krebs H, Woods H, and Alberti K. Hyperlactataemia and lactic acidosis. Essays Med Biochem 1: 81–103, 1975.


Krishtal, O. A. and Pidoplichko V. I.: A receptor for protons in the nerve cell membrane. Neuroscience 5:2325-2327, 1980.

Krishtal, O. A. and Pidoplichko, V. I.: Receptor for protons in the membrane of sensory neurons. Brain Res. 214:150-154, 1981.

Krishtal, O. A., Osipchuk, Y. V., Sheles, T. N. and Smirnoff S. V.:Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Research 436:352-356, 1987.

Leonard, A. S., Yermolaieva, O., Hmska-Hageman, A., Askwith C.C., Price, M. P., Wemmie, J. A., Welsh, M. J.: cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proc Natl Acad Sci 100:2029-2034, 2003.

Lingueglia, E., de Weille, J. R., Bassilana, F., Heurteaux, C., Saka, H., Waldmann R., Lazdunski, M.: A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chern 272:29778-29783, 1997.

Macdonald, R., Bingham, S., Bond, B. C., Parsons, A. A., Philpott, K.L.: Determination of changes in mRNA expression in a rat model of neuropathic pain by Taqman quantitative RT-PCR. Brain Res Mol Brain Res 90:48-56, 2001.


Martha U.Gillette and Terrence J. Sejnowski.:Biological Clocks Coordinately Keep Life on Time.:SCIENCE 309,2005.

Miesenbock, G., Angelis, D. A., and Rothman, J. E.: Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192-195, 1998.

Mintz EM, Marvel CL, Gillespie CF, Price KM, Albers HE Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J Neurosci 19:5124–5130,1999.

Moga MM, Moore RY. Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389: 508-534,1997.

Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp Neurol 146;1-14,1972.

Moore RY, Speh JC. GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150;112-116,1993.

Moore RY, Speh JC, Leak RK. Suprachiasmatic nucleus organization.Cell Tissue Res 309;89-98,2002.

Oakley B II and Wen R. Extracellular pH in the isolated retina of the toad in darkness and during illumination. J Physiol 419: 353–378, 1989.

Padnick-Silver L and Linsenmeier RA. Quantification of in vivo anaerobic metabolism in the normal cat retina through intraretinal pH measurements. Vis Neurosci 19: 793–806, 2002.

Pittendrigh CS .Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55: 17–54,1993.

Price, M. P, Snyder, P. M, Welsh, M. J.: Cloning and expression of a novel human brain Na+ channel. JBiol Chem 271:7879-7882, 1996.

Price, M. P., Lewin, G. R., Mcllwrath, S. L., Cheng, C., Xie, J.,Heppenstall, P. A., Stucky, C. L., Mannsf'eldt, A. G., Brennan, T. J.,and Drummond, H. A.: The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007-1011, 2000.

Price, M. P., Mcilerath, S. L., Xie, J., Cheng, C., Qiao, J., Tarr, D. E.,Sluka, K. A., B rennan, T. J., L ewin, G. R. and Welsh, M. J.: The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071-1083, 2001.

Pickard GE, Weber ET, Scott PA, Riberdy AF, Rea MA. 5HT1B receptor agonists inhibit light-induced phase shifts of behavioral circadian rhythms and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci 16: 8208-8220,1996.

Ralph MR, Menaker M . GABA regulation of circadian responses to light: I. Involvement of GABAA-benzodiazepine and GABAB receptors. J Neurosci9:2858–2865,1989.

Reppert and Weaver Coordination of circadian timing in mammals. Nature 418 : 935-941, 2002.

Schwartz W and Gainer JH. Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197: 1089–1091,1977.

Stein, C., Millan, M. J, and Herz, A.: Unilateral inflammation of the hinclpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 31:455-461, 1988.

Sutherland, S., Benson, C., Adelman, J., McCleskey, E.: Acid- sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl. Acad. Sci. 98:711-716, 2001.

Ueli Schibler, Juergen A. Ripperger, and Steven A.Brown.Chronobiology--Reducing Time Science 293: 437-438,2001

Ugawa, S., Ueda, T., Ishida Y., Nishigaki, M., Shibata Y., and Shimada S.: Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin. Invest. 110:1185-1190, 2002.

Van den pol, A.N. :The hypothalamic suprachiasmatic nucleus of the rat : intrinsic anatomy.J Comp.Neurol .191,661-702,1980.

van Esseveldt LE, Lehman MN, Boer GJ .The suprachiasmatic nucleus and the circadian timing system revisited. Brain Res Rev 33: 34–77,2000.

Voilley, N., Weille, J., Mamet, J., and Lazdunski, M.: Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. The Journal of Neuroscience 21:8026-8033, 2001.

Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I., and Lazdunski, M.: The mammalian degenerin MDEG, an amiloride- sensitive cation channel activated by mutations causing neuro- degeneration in Caenorhabditis elegans. J Biol Chem 271: 10433-10436, 1996.


Waldmann, R., Bassilana, F., de WeiUe, J., Champigny, G., Heurteaux, C., Lazdunski, M.: Molecular cloning of a non- inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272: 20975-20978, 1997(a).

Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., Lazdunski, M.: A proton-gated cation channel involved in acid sensing. Nature 386:173-177, 1997(b).

Waldmann, R. and Lazdunski, M.: H-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr. Opin. Neurobiol. 8:418-424, 1998.

Weille, J. and Bassilana, F.: Dependence of the acid-sensitive ion channel, ASICla, on extracellular Ca2+ ions. Brain research 900: 277-281, 2001.


WeiWang, Bo Duan, Han Xu, Lin Xu, and Tian-Le Xu.Calcium-permeable Acid-sensing Ion Channel Is a Molecular Target of the Neurotoxic Metal Ion Lead.J Biol Chem 281: 2497–2505,2006.

Welsh DK, Reppert SM. Gap junctions couple astrocytes but not neurons in dissociated culture of rat suprachiasmatic nucleus. Brain Res 706;30-36,1996.

Wemmie, J. A., Chen, J., Askwith, C. C., Hruska-Hageman, A. M.,Price, M. P., Nolan, B. C., Yoder, P. G., Lamani, E., Hoshi, T., John,H., Freeman, J., and Welsh, M. J.: The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory.Neuron 34:463-477, 2002.

Wemmie, J. A., Coryel, M. W., Askwith, C. C., Lamani, E., Leonard, A. S., Sigrnund, C. D., Welsh, M. J.: Overexpression of acid-sensing ion channel la in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci 101:3621-3626,2004.

Xiang-Ping Chu, Natasha Close, Julie A. Saugstad, and Zhi-Gang Xiong.ASIC1a-Specific Modulation of Acid-Sensing Ion Channels in Mouse Cortical Neurons by Redox Reagents.The Journal of Neuroscience 26:5329 –5339,2006.

Yamamoto F, Borgula GA, and Steinberg RH. Effects of light and darkness on pH outside rod photoreceptors in the cat retina. Exp Eye Res 54: 685–697, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top