跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖泰翔
研究生(外文):Liao Tai-Hsiang
論文名稱:探討額外體感覺輸入對使用可塑性影響:穿顱磁刺激描繪動作皮質區域之研究
論文名稱(外文):Effects of Additional Somatosensory Inputs on Use-Dependent Plasticity of Human Motor Cortex:A TMS Mapping Study
指導教授:連恒裕
指導教授(外文):Lien Hen-Yu
學位類別:碩士
校院名稱:長庚大學
系所名稱:復健科學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:139
中文關鍵詞:使用可塑性體感覺輸入穿顱磁場刺激動作皮質區描繪
外文關鍵詞:Use-dependent plasticitySomatosensory inputsTranscranial magnetic stimulationMotor cortex mapping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究顯示動作皮質組成可以由動作訓練或體感覺輸入而有重組的現象產生。然而在動作練習的過程中,額外的體感覺輸入是否可促進動作皮質使用可塑性表現則未有定論。因此,本研究目的為以穿顱磁場刺激描繪動作皮質表現區域之技術,探討周邊體感覺刺激如何影響動作皮質使用可塑性以及動作技巧之學習。
本次實驗徵召18位正常受試者參與實驗,以隨機方式分配至下列三個組別:1) 只接受手掌尺側周邊感覺閾值電刺激;2) 只接受小指外展之動作練習;3) 同時接受動作練習以及手掌尺側周邊感覺閥值電刺激。每一位受試者接受2次訓練前測試,和連續三天為時15分鐘的訓練,以及最後經過一天休息後所進行的留存測試。量測參數包括動作技巧變化程度與動作皮質塑性表現,包含藉由動作分析系統觀察小指外展動作獨立控制能力與小指外展之最大速度與最大加速度值,並利用穿顱磁場刺激儀量測外展小指肌 (ADM)動作皮質表現區域之休息動作閾值、區域面積、活化體積和重心位置。
研究結果顯示,雖然單獨接受動作練習與動作練習結合周邊感覺閾值電刺激在3天訓練後可獲得相同小指外展之獨立控制能力的動作訓練表現,並引起顯著外展小指肌動作皮質區域面積和體積變化,但是動作練習結合周邊感覺閾值電刺激可以在較短的訓練時間內得到顯著的訓練效果,且可以引起較快、較顯著且較持久之動作皮質區域面積和體積的增加。此外,單獨接受周邊感覺閾值電刺激只有在動作皮質區域面積此一皮質塑性參數上有較顯著之變化,且無法有效提升小指外展之獨立控制能力。總結本實驗結果我們推論動作練習中同步進行周邊感覺閾值電刺激以提供額外體感覺輸入可以增進動作皮質使用可塑性表現和提升動作訓練效果。
It is established that the primary motor cortex (MI) possesses the ability to reorganize after motor skill training or altering somatosensory inputs. However, information regarding how somatosensory stimulation optimizing use-dependent plasticity of MI were inconclusive. The purpose of this study was to investigate the effects of additional somatosensory inputs with concurrent motor practice in developing isolated control of hand movement and to observe its effect on promoting motor cortex reorganization.
Eighteen healthy adults were recruited and assigned randomly to 3 different training groups. Each participant received either somatosensory stimulation alone (SS), motor practice alone (MP), or motor practice combined with somatosensory stimulation (MP+SS). Participants was observed at 2 pre-training sessions, after a 15-minute training session for 3 consecutive days and a retest session 1 day after training has completed. Outcome measures included the isolated control ability of the fifth finger abduction , maximal velocity and acceleration of the fifth finger abduction via motion analysis, and motor map parameters of abductor digiti minimi (ADM) muscle, resting motor threshold, map areas, volume and center of gravity, via the transcranial magnetic stimulation technique.
Both the MP+SS and the MP groups showed similar improvements in the isolated control ability of the fifth finger abduction in the end of training but no training effect was observed for SS group. Whereas, the MP+SS group demonstrated better training effect than the MP group after the first day of training (p=.021). In addition, over the course of training, the cortical map areas and volume of ADM both increased significantly in MP and MP+SS groups while SS group increased map areas only. However, the MP+SS group resulted in faster, larger and longer changes than all other groups. According to the findings of this study we concluded that additional somatosensory inputs with concurrent motor practice can enhance use-dependent plasticity and promote early acquisition of motor skill.
第一章 前言………………………………………………………………1
第一節 研究背景與動機………………………………………………1
第二節 名詞解釋………………………………………………………5
第三節 研究問題………………………………………………………6
第四節 定義研究問題…………………………………………………6
第五節 研究假說………………………………………………………7
第二章 文獻回顧…………………………………………………………8
第一節 大腦動作皮質與塑性之概觀…………………………………8
第二節 動作皮質區之使用可塑性……………………………………12
第三節 影響使用可塑性之因素………………………………………17
第四節 動作皮質區之體感覺輸入可塑性……………………………22
第五節 穿顱磁刺激於動作皮質區之描繪……………………………26
第三章 研究方法與步驟…………………………………………………33
第一節 實驗設計………………………………………………………33
第二節 研究對象………………………………………………………34
第三節 實驗儀器與配置………………………………………………34
第四節 實驗步驟………………………………………………………38
(一)周邊感覺閾值電刺激組………………………………………40
(二)動作練習組……………………………………………………41
(三)動作練習結合周邊感覺閾值電刺激組………………………41
第五節 資料處理與分析………………………………………………42
(一)小指外展動作獨立控制能力…………………………………43
(二)動作皮質塑性…………………………………………………44
第六節 統計分析………………………………………………………48
第四章 實驗結果…………………………………………………………49
第一節 受試者基本資料………………………………………………49
第二節 小指外展動作獨立控制能力之變化…………………………51
第三節 小指外展動作最大速度之變化………………………………56
第四節 小指外展動作最大加速度之變化……………………………59
第五節 外展小指肌休息動作閾值之變化……………………………62
第六節 外展小指肌動作皮質區域面積之變化………………………63
第七節 外展小指肌動作皮質區域體積之變化………………………67
第八節 外展小指肌動作皮質區域重心位置之變化…………………72
第五章 討論………………………………………………………………75
第一節 小指外展動作獨立控制能力改變之現象……………………76
(一)單獨接受周邊感覺閾值電刺激無法提升小指外展
獨立之控制能力………………………………………………76
(二)動作練習結合周邊感覺閾值電刺激比一般單獨接
受動作練習可在較短的訓練時間內達到明顯動作
訓練果…………………………………………………………79
第二節 動皮質塑性改變之現象與可能機制……………………………81
(一)三組訓練前後外展小指肌之休息動作閾值無顯著
變化………………………………………………………………81
(二)單獨接受周邊感覺閾值電刺激與單獨接受動作練
習在動作皮質區域面積和體積改變情況不同之分
析…………………………………………………………………82
(三)動作練習結合周邊感覺閾值電刺激在動作皮質區
域面積和體積皆有快速且顯著改變……………………………86
(四)三種訓練並不影響動作皮質區域重心位置與原點
間之向量距離與角度變化………………………………………90
第三節 動作皮質塑性變化與動作行為表現及學習效益之
依存性………………………………………………………………94
(一)動作練習結合周邊感覺閾值電刺激造成小指外展
動作獨立控制能力與使用可塑性改變的時程與方
向不同於單獨接受動作練習……………………………………91
(二)留存測試結果……………………………………………………93
第四節 研究限制…………………………………………………………95
(一)樣本大小之限制…………………………………………………95
(二)實驗時間的限制…………………………………………………97
(三)缺乏皮質下神經迴路興奮性的變化結果………………………98
第六章 結論…………………………………………………………………100
參考文獻………………………………………………………………………102
附錄……………………………………………………………………………111
附錄一. 實驗備製於量測小指外展活動之信效度…………………………111
附錄二. 穿顱磁場刺激測繪運動皮質區之再測信度研究…………………114
附錄三. 受試者同意書………………………………………………………117
附錄四. 愛丁堡手側化問卷…………………………………………………121
附錄五. 個別訓練方式下不同觀察階段間小指外展之獨
立控制能力(SI%)變化量成對比較之統計數據…………………122
附錄六. 三種訓練方式在相同觀察階段間小指外展之獨
立控制能力(SI%)變化量成對比較之統計數據…………………125
附錄七. 三種訓練方式在不同觀察階段間小指外展之
最大速度(MV%)變化量成對比較之統計數據……………………128
附錄八. 三種訓練方式在不同觀察階段間小指外展之
最大加速度(MA%)變化量成對比較之統計數
據……………………………………………………………………129
附錄九. 個別訓練方式下不同觀察階段間外展小指肌
之動作皮質區域面積(Area%)變化量成對比較
之統計數據…………………………………………………………130
附錄十. 三種訓練方式在相同觀察階段間外展小指肌
之動作皮質區域面積(Area%)變化量成對比較之
統計數據……………………………………………………………133
附錄十一. 個別訓練方式下不同觀察階段間外展小指肌
之動作皮質區域體積(Volume%)變化量成對
比較之統計數據……………………………………………………135
附錄十二. 三種訓練方式在相同觀察階段間外展小指肌
之動作皮質區域面積(Volume%)變化量成對
比較之統計數據……………………………………………………138
Asanuma, H. and Arissian, K. (1984). Experiments on functional role of
peripheral input to motor cortex during voluntary movements in the monkey. Journal of Neurophysiology, 52, 212-227.
Baker, A. T., Jalinous, R. and Freeston, I. L. (1985). Non-invasive magnetic stimulation of the human motor cortex. Lancet, 8473, 1106-1107.
Baranyi, A. and Feher, O. (1981). Synaptic facilitation requires paired activation of convergent pathways in the neocortex. Nature, 290, 413-415.
Beekhuizen, K. S. and Field-Fote, E. S. (2005). Massed practice versus massed practice with stimulation : effects on upper extremity function and cortical plasticity in individuals with incomplete cervical spinal cord injury. Neurorehablitation and Neural Repair, 19, 33-45.
Bonsto, C., Zanette, G., Fiaschi, A. and Rossini, P. M. (2002). Activity-dependent modulation of synapic transmission in the intact human motor cortex revealed with transcranial magnetic stimulation. Cerebral Cortex, 12, 1057-1062.
Bonsto, C., Zanette, G. and Manganotti, P. (1996). Direct and crossed modulation of human motor cortex excitability following exercise. Neuroscience Letters, 216, 97-100.
Brasil-Neto, J. P., McShane, L. M., Fuhr, P., Hallett, M. and Cohen, L. G. (1992). Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalography and clinical Neurophysiology, 85, 9-16.
Butefisch, C. M., Khurana, V., Kopylev, L. and Cohen, L. G. (2004). Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. Journal of Neurophysiology, 91, 2110-2116.
Butefisch, C. M., Davis, B. C., Wise, S. P., Sawaki, L., Kopylev, L. and Classen, J. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 3661-3665.
Byrnes, M. L., Thickbroom, G. W., Phillips, B. A., Wilson, S. A. and Mastaglia, F. L. (1999). Long-term changes in motor cortical organization after recovery from subcortical stroke. Brain Research, 889, 278-287.
Chartlon, C. S., Ridding, M. C., Thompson, P. D. and Miles, T. S. (2003). Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. Journal of the Neurological Sciences, 208, 79-85.
Charlton, I.W., Tate, P. and Roren, L. (2002) Repeatability of an optimised lower body model. Gait & Posture, 20, 213-221.
Classen, J. and Cohen, L. G. (2003). Practice-induced plasticity in the human motor cortex In Boniface, S., Ziemann, U., Plasticity in the human nervous system (pp. 90-106). UK: Cambridge.
Classen, J., Liepert, J., Wise, S. P., Hallett, M. and Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79, 1117-1123.
Conforto, A. B., Kaelin-Lang, A. and Cohen, L. G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Annual Review of Neuroscience, 51, 122-125
Crammond, D. J. and Kalaska, J. F. (2000). Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. Journal of Neurophysiology, 84, 986-1005.
Fraser, C., Power, M., Hamdy, S., Rothwell, J., Hobody, D. and Hollander, I. (2003). Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron, 34, 831-840.
Grafton, S. T., Mazziotta, J. C. and Presty, S. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. Journal of Neuroscience, 12, 2542-2548.
Hager-Ross, C. and Schieber, M. H. (2000). Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. The Journal of Neuroscience, 20, 8542-8550.
Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Reviews, 36, 169-174.
Hamdy, S., Rothwell, J. C. and Aziz, Q. (1998). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neuroscience, 1, 64-68.
Hess, G. and Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. Journal of Neurophysiology, 71, 2543-2547.
Houk, J., Buckingham, J. and Barto, A. (1997). Models of the cerebellum and motor learning In Cordo P., Bell C., Harnard S., Motor learning and synaptic plasticity in the cerebellum (pp 30-46) UK Cambridge.
Huang, C. S., Sirisko, M. A., Hiraba, H., Murray, G. H. and Sessle, B. J. (1998). Organisation of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections. Journal of Neurophysiology, 59, 796-818.
Jungling, S., Bock, O. and Girgenrath, M. (2002). Speed-accuracy trade-off of grasping movements during microgravity. Aviation Space and Environmental Medicine, 73(5), 430-5, 2002.
Jones, E. G. (2000). Cortical and subcortical contribution to activity-dependent plasticity in primate somatosensory cortex. Annual Review of Neuroscience, 23, 1-37.
Kaelin-Lang, A., Sawaki, L. and Cohen, L. G. (2005). Role of voluntary drive in encoding an elementary motor memory. Journal of Neurophysiology, 93, 1099-1103.
Kaelin-Lang, A., Luft, A. R., Sawaki, L., Burstein, A. H., Sohn, Y. H. and Cohen, L. G. (2002). Modulation of human corticomotor excitability by somatosensory input . Journal of Physiology, 540, 623-633.
Khaslavskaia, S., Ladouceur, M. and Sinkjaer, T. (2002). Increase in tibualis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Experimental Brain Research, 145, 309-315.
Kleim, J. A., Hogg, T. M., VandenBerg, P. M., Cooper, N. R., Bruneau, R. and Remple, M. (2004). Cortical synaptogenesis and motor map reprganization occur during late, but not early, phase of motor skill learning. The Journal of Neuroscience, 24(3), 628-633
Knash, M. E., Kido, A., Gorassini, M., Chan, K. M. and Sten, R. B. (2003). Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Experimental Brain Research, 153, 366-377.
Kobayashi, M. and Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology . The Lancet Neurology, 2, 145-156.
Lefebvre, R., Pepin, A., Louis, P. F. and Boucher, J. P. (2004). Reliability of the MEP elicited through TMS at three sites. Journal of Manipulative Physiological Therapy, 27, 97-102.
Liepert, J., Bauder, M. H., Miltner, W. H. R., Taub, E. and Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31, 1210-1216.
Liepert, J., Miltner, W. H. R., Bauder, H., Sommer, M., Dettmers, C. and Taub, E., et al. (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience Letters, 250, 5-8.
McKay, D., Ridding, M. C., Thompson, P. D. and Miles, T. S. (2002). Induction of persistent changes in the organization of the human motor cortex. Experimental Brain Research, 143, 342-349.
McKay, D., Brooker, R., Giacomin, P., Ridding, M. and Miles, T. (2002). Time course of induction of increased human motor cortex excitability by nerve stimulation. Neuroreport, 13(10), 1271-3.
McMillian, A. S., Watson, C. and Walshaw, D. (1998). TMS mapping of the cortical topography of the human masseter muscle. Archives of Oral Biology, 43, 925-931.
Mengia, S., Pedotti, R. and Donoghue, J. P. (2003). The nature and mechanisms of plasticity. In: Boniface, S., Ziemann, U., Plasticity in the human nervous system (pp. 1-25). UK: Cambridge.
Mima, T., Oga, T., Rothwell, J., Satow, T., Yamamoto, J. and Toma, K., et al. (2004). Shot-term high-frequency transcutaneous electrical nerve stimulation decreases human motor cortex excitability. Neuroscience Letters, 355, 85-88.
Miranda, P. C., Carvalho, M., Conceicao, I. and Sales Luis, M. L. (1997). A new method for reproducible coil positioning in transcranial magnetic stimulation mapping. Electroencephalography and clinical Neurophysiology, 105, 116-123.
Monfils, M. H., Plautz, E. J. and Kleim, J. A. (2005). In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist, 11, 471-483.
Mortifee, P., Stewart, H., Schulzer, M. and Eisen, A. (1994). Reliability of TMS for mapping the human motor cortex. Electroencephalography and clinical Neurophysiology, 93, 131-137.
Mottet, D., Bootsma, R. J., Guiard, Y. and Laurent, M. (1994). Fitts' law in two-dimensional task space. Experimental Brain Research, 100(1), 144-8, 1994.
Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L. and Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Experimental Brain Research, 136, 431-438.
Pascual-Leone, A., Dang, N., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A. and Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 79, 1037-1045.
Pascual-Leone, A., Grafman, J. and Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263, 1287-1289.
Pearce, A. J., Thickbroom, G. W., Byrnes, M. L. and Mastaglia, F. L. (2000). Functional reorganization of the corticomotor projection to the hand in skilled racquet players. Experimental Brain Research, 130, 238-243.
Perez, M. A., Lungholt, B. K. S., Nyborg, K. and Nielsen, J. B. (2004). Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Experimental Brain Research, 159, 197-205.
Pitchre, J. B., Ridding, M. C. and Miles, T. S. (2003). Frequency-dependent:bi-directional plasticity in motor cortex of human adults. Clinical Neurophysiology, 114, 1265-1271.
Portney, L. G. and Watkins, M. P., (2000). Experimental Design. In: Foundations of clinical research, application to practice 2nd edition (pp.177-202). US:Prentice Hall.
Ridding, M. C. and Uy, J. (2003). Changes in motor cortical excitability induced by paired associated stimulation. Clinical Neurophysiology, 114, 1437-1444.
Ridding, M. C., Mckay, D. R., Thompson, P. D. and Miles, T. S. (2001). Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clinical Neurophysiology, 112, 1461-1469.
Ridding, M. C., Brouwer, B., Miles, T. S., Pitcher, J. B. and Thompson, P. D. (2000). Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Experimental Brain Research, 131, 135-143.
Sanes, J. N. and Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual Review of Neuroscience, 23, 393-415.
Schieber, M. H. and Poliakov, A. V. (1998). Partial inactivation of the primary motor cortex hand area: effects on individuated finger movements. Journal of Neuroscience, 18, 9038-9054.
Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R. and Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123, 572-584.
Svensson, P., Romaniello, A., Arendy-Nielsen, L. and Sessle, B. J. (2003). Plasticity in corticomotor control of the human tongue musculature induced by tongue-task training. Experimental Brain Research, 152, 42-51.
Thickbroom, G. W., Byrnes, M. L. and Mastaglia, F. L. (1999). A model of the effect of MEP amplitude variation on the accuracy of TMS mapping. Clinical Neurophysiology, 110, 941-943.
Wassermann, E. M., McShane, L. M., Hallett, M. and Cohen, L. G. (1992). Noninvasive mapping of muscle representations in human motor cortex. Electroencephalography and clinical Neurophysiology, 85, 1-8.
Wessel, K., Zeffiro, T., Toro, C. and Hallett, H. (1997). Self-paced versus metronome-paced fibger movements. A positron emission tomography study. Journal of Neuroimaging, 7, 145-151.
Wilson, S. A., Thickbroom, G. W. and Mastaglia, F. L. (1993a). Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. Journal of the Neurological Sciences, 118, 134-144.
Wilson, S. A., Thickbroom, G. W. and Mastaglia, F. L. (1993b). Topography of excitatory and inhibitory muscle responses evoked by TMS in the human motor cortex. Neuroscience Letters, 154, 52-56.
Wolter, A., Sandbrink, F., Schottmann, A., Kunesch, E., Stefan, K. and Cohen, L. G. (2003). A temporal asymmetric hennian rule governing plasticity in the juman motor cortex. Journal of Neurophysiology, 89, 2339-2345.
Ziemann, U., Iliac, T. V., Pauli, C., Meintzschel, F. and Ruge, D. (2004). Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in himan motor cortex. Journal of Neuroscience, 24(7), 1666-1672.
Ziemann, U., Muellbacher, W., Hallett, M. and Cohen, L. G. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain, 124(Pt 6), 1171-81.
Ziemann, U., Corwell, B. and Cohen, L. G.. (1998). Modulation of plasticity in human motor cortex after forearm ischemic nerve block. Journal of Neuroscience, 18(3), 1115-1123.
胡名霞編著,動作控制與動作學習,台北;金名,2001年10月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top