跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/06 15:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉劭軒
研究生(外文):Syao-Syuan Liu
論文名稱:採用分散對應機制以達成WiMAX高容錯率傳輸之研究
論文名稱(外文):Scattered Mapping Mechanism for Fault-Tolerant Transmission in WiMAX Networks
指導教授:陳仁暉
指導教授(外文):JenHui Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:53
外文關鍵詞:WiMAXMACOFDMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
都會型無線網路(WMAN)是未來無線網路的發展趨勢和方向。而目前由IEEE 802.16委員會主導都會型無線網路的發展與研究,IEEE 802.16即為因應此研究的標準。而寬頻無線通訊(BWA)能夠提供比傳統區域型無線網路更高的頻寬以及傳輸速率。考慮到無線網路通訊固有的干擾以及屏蔽問題,由於在物理層(Physical Layer)載波受到影響後,會進而影響到媒體存取層(MAC Layer)的品質。在本篇論文中,我們將討論如何在寬頻無線通訊系統上消除干擾以及屏蔽效應,且以OFDMA的物理層架構為主。使用OFDMA的物理層架構是為了增加在有限頻寬內的傳輸量,以及提供相當程度的抗干擾性。但是OFDMA繼承了OFDM的特性,也就是會有內發性的干擾,例如ISI和ICI皆會破壞OFDM本身的載波正交特性,也因此讓有效的訊號減少,大大的降低OFDMA原本應有的效能。為了要改善這些問題,我們提出了分散對應機制(SMM),可適用於IEEE 802.16的OFDMA架構上。此機制會將MAC層中的Frame做重新排列的動作,並且依照轉盤演算法(Turntable algorithm)的規則排列,可以使得每個使用者獲得更好的成功傳輸率。並且使用此分散對應機制可以增加整體系統的錯誤容忍率,以及為寬頻無線通訊系統增加安全性。在本篇論文中,我們將會有分析以及模擬的結果以證明分散對應機制對於效能的增進。
In wireless metropolitan area networks (WMANs), the medium access control (MAC) layer and the physical (PHY) layer in IEEE 802.16 standard plays the main role of determining the efficiency of
controlling the limited connection bandwidth of whole wireless channels. Also such a broadband wireless networks could provide more bandwidth than the traditional wireless networks. Considering
the interference and fading problem to the subcarrier in the PHY layer as well as the subchannel the MAC layer. We will discusses how to eliminate the interference and fading effect of the wireless network systems based on orthogonal frequency-division multiple access (OFDMA) scheme. The OFDMA scheme is regarded as a solution for improving the performance of wireless broadcasting systems. It is based on orthogonal frequency-division multiplexing (OFDM) and inherits its immunity to inter-symbol interference (ISI), intercarrier interference (ICI), and frequency selective fading. Notwithstanding some mechanisms are investigated to solve the inevitable intra-interferences, there still has many external interferences, which may corrupt the ongoing transmissions. To alleviate this effect, we propose scattered mapping mechanism (SMM) in the OFDMA frame based on the IEEE 802.16 standard. This mechanism will rearrange the permutation of slots in each subframe, which will improve the fault tolerance ability and provide the quality of security. For the purpose, we will demonstrate the numerical results to prove our method indeed improve the performance over the broadband wireless access network over OFDMA.
1 Introduction 1
1.1 History of IEEE 802.16 MAC Protocol
1.2 An Overview of IEEE 802.16 MAC and PHY Protocol
1.3 Motivation
2 System Model and Assumption
3 Scattered Mapping Mechanism
3.1 The Scattered Mapping Problem
3.2 The NP-complete Problem
3.3 Scattered Mapping Mechanism
3.4 Proof and Analysis
3.5 Time Complexity
3.6 The Modi¯cation in MAC Layer
4 Simulation Model and Results
4.1 Simulation Model
4.2 Simulation Results
4.3 Throughput
5 Conclusion
Bibliography
[1] M.S. Alouini, and A.J. Goldsmith, ``Adaptive modulation over Nakagami fading channels," Kluwer J. Wireless Commun., vol. 13, no. 1/2, pp. 119--143, May 2000.

[2] D.A. Bell, ``Diffcult Data Placement Problems," The Computer Journal, vol. 27, no. 4, pp. 315--320, 1984.

[3] J. Chen, W.K. Tan, C.C.Wang, ``MCAS: a macrocell channel allocation scheme for broadband wireless access networks," WiMob'2005, vol. 1, pp. 107--114, Aug. 2005.

[4] K.D. Choe, Y.J. Lim, S.K. Park, ``Subcarrier Adaptation for Multiuser OFDM Systems," Proc. IEEE GLOBECOM'04, vol. 2, pp. 1230--1233, Nov. 2004.

[5] M.R. Garey, D.S. Johnson, Computers and Intractability - A Guide to the Theory of NP-Completeness, Freeman, 1999.

[6] K. Didem, G. Li, and H. Liu, ``Computationally E±cient Bandwidrh Allocation and Power Control for OFDMA," IEEE Trans. Wirel. Commun., vol. 2, no. 6, pp. 1150--1158, Nov. 2003.

[7] IEEE 802.16 Working Group, ``IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," IEEE Std. 802.16-2001, Dec. 2001.

[8] IEEE 802.16 Working Group, ``IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access SystemsXAmendment 2: Medium Access Control Modi¯cations and Additional Physical Layer Specifications for 2-11 GHz," IEEE Std. 802.16a, Apr. 2003.

[9] IEEE 802.16 Working Group, ``IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," IEEE Std. 802.16-2004, Oct. 2004.

[10] IEEE 802.16 Working Group, ``IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1," IEEE Std. 802.16e-2005, Feb. 2006.

[11] M. El-Sayed, and J. Jaffe, ``A View of Telecommunications Network Evolution," IEEE Commun. Mag., vol. 40, no. 12, pp. 74--81, Dec. 2002.

[12] A. Ghosh, D.R. Wolter, J.G. Andrews, and R. Chen, ``Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential," IEEE Commun. Mag., vol. 43, no. 2, pp.129--136, Feb. 2005.

[13] M.M. Islam, and M. Murshed, ``Novel Velocity and Call Duration Support for QoS Provision in Mobile Wireless Networks," IEEE Wirel. Commun., vol. 11, no. 5, pp. 22--30, Oct. 2004.

[14] W. Jianfeng, L.N. Tho, and X. Yinglin, ``ZCZ-CDMA and OFDMA Using M-QAM for Broadband Wireless Communications," Wirel. Commun. Mod. Comput., vol. 4, no. 4, pp. 427--438, June 2004.

[15] I. Koffman, and V. Roman, ``Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16," IEEE Commun. Mag., vol. 40, no. 4, pp. 96--103, Apr. 2002.

[16] G. Kulkarni, S. Adlakha, and M. Srivastava, ``Subcarrier allocation and bit loading algorithms for OFDMA-based wireless networks," IEEE Trans. Mob. Computing, vol. 4, no. 6, pp. 652--662, Nov. 2005.

[17] T. Kwon, H. Lee, S. Choi, J. Kim, and D.H. Cho, ``Design and Implementation of a Simulator Based on a Cross-Layer Protocol between MAC and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System," IEEE Commun. Mag., vol. 43, no. 12, pp. 136--146, Dec. 2005.

[18] R. Lee, J. Kim, J. Yu, J. Lee, and D. Kim, ``Capacity analysis considering channel resource overhead for mobile Internet access (WiBro)," IEEE VTC'05, vol. 5, pp. 3082--3086, May 2005.

[19] W.C.Y. Lee, ``CS-OFDMA: A New Wireless CDD Physical Layer Scheme," IEEE Commun. Mag., vol. 43, no. 2, pp. 74--79, Feb. 2005.

[20] L. Li, FEC Performance with ARQ and Adaptive Burst Profile Selection, 2001.

[21] Q. Liu, X. Wang, and G.B. Giannakis, ``A Cross-Layer Scheduling Algorithm With QoS Support in Wireless Networks," IEEE Trans. Vehicul. Technol., vol. 55, no. 3, pp. 839--847, May 2006.

[22] H. Minn, V.K. Bhargava, K.B. Letaief, ``A Robust Timing and Frequency Synchronization for OFDM Systems," IEEE Trans. Wirel. Commun., vol. 2, no. 4, pp. 822--839, Jul. 2003.

[23] S.M. Oh and J.H. Kim, ``The Analysis of the Optimal Contention Period for Broadband Wireless Access Network," Proc. IEEE PerCom 2005 Workshops, pp. 215--219, 8--12 Mar. 2005.

[24] T. Pollet, M. Van Bladel, M. Moeneclaey, ``BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise," IEEE Trans. Commun., vol. 43, no. 234, pp. 191--193, Feb. 1995.

[25] D. Rende, T.F. Wong, ``Bit-interleaved space-frequency coded Modulation for OFDM systems," IEEE Trans. Wirel. Commun., vol. 4, no. 5, pp. 2256--2266, Sept. 2005.

[26] J. Rotman, A First Course in Abstract Algebra, Prentice-Hall, 1996.

[27] T.J. Willink, P.H. Wittke, L.L. Campbell, ``Evaluation of the Effects of Intersymbol Interference in Decision-Feedback Equalizers," IEEE Trans. Commun., vol. 48, no. 4, pp. 629--636, Apr. 2000.

[28] F. Ohrtman, WiMax Handbook - Building 802.16 Wireless Networks, McGrew-Hill, May 2005.

[29] H. Yaghoobi, ``Scalable OFDMA Physical Layer in IEEE 802.16 Wireless-MAN," Intel Technol. Journal, vol. 8, no. 3, pp. 201--212, Aug. 2004.

[30] Y.H. You, B.J. Jang, and H.K. Song, ``Low-Complexity and MAI-Robust Wireless Broadcasting System With Return Channel," IEEE Trans. Broadcasting, vol. 52, no. 1, pp. 71--76, Mar. 2006.

[31] P. Zhang, X. Tao, Y. Wang, L. Li, and Y. Wang, ``A Vision form the Future: Beyond 3G TDD," IEEE Commun. Mag., vol. 43, no. 1, pp. 38--44, Jan. 2005.

[32] S. Zhou, Y. Li, M. Zhao, X. Xu, J. Wang, and Y. Yao, ``Novel Techniques to Improve Downlink Multiple Access Capacity for Beyond 3G," IEEE Commun. Mag., vol. 43, no. 1, pp. 61--69, Jan. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊