(3.220.231.235) 您好!臺灣時間:2021/03/09 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭振忠
研究生(外文):Chenchung Guo
論文名稱:在無線寬頻網路中利用轉送基地臺來提昇效能之研究
論文名稱(外文):A Study of System Enhancement via Relay Station in WiMAX Networks
指導教授:陳仁暉
學位類別:碩士
校院名稱:長庚大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
外文關鍵詞:BWAqueuingnetworkprotocolthroughput
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The broadband wireless access (BWA) system, the latest technology of the wireless communication system, will become one of the major network types in the future. It is more superior than the other existing wireless systems because of its high data rate. In recent years, scientists and engineers investigate the relay station (RS) for packets forwarding due to the reason of coverage percentage of the base station (BS). The merit of the RS is to provide a longer transmission range and higher data rate to overcome this disadvantage. However, considering the queuing delay, transmission delay, and the propagation delay, the forwarded packets may suffer from the additional delay in the RS. In this paper, we propose an architecture base on the Markov chain model to analyze the potential delays and throughput enhancement caused by the RS. Simulation results show that the RS can provide a higher throughput than the legacy IEEE 802.16d based BWA system and reduce the end-to-end transfer delay. The investigation will give subscribers stations (SSs) a better strategy for data transmission. Moreover, based on the investigation, the BS can also benefit from adjusting the transmission power to achieve a higher throughput.
1 Introduction 1
1.1 History of WiMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 IEEE 802.16-2004 MAC . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 The frame structure of WiMAX . . . . . . . . . . . . . . . . . 2
1.2.2 Process of joining the network . . . . . . . . . . . . . . . . . . 3
1.2.3 Process of transmitting a packet . . . . . . . . . . . . . . . . . 4
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 WiMAX MAC 8
2.1 WiMAX MAC with Relay Station . . . . . . . . . . . . . . . . . . . . 8
2.2 Relationship between Range and Rate . . . . . . . . . . . . . . . . . 9
2.2.1 Friis Free Space Model . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Modulation and Range . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Backo® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Multi-rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Analysis Model Design 13
3.1 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Architecture of WiMAX networks with RS . . . . . . . . . . . . . . . 15
3.3 Queuing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Queuing model of SS . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Queuing model of RS . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Queuing model of BS . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Bandwidth Request Delay Estimation . . . . . . . . . . . . . . . . . . 21
3.5 Throughput Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Simulation Model and Results 25
4.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Scenario of Simulation . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Arrival rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Transmission power . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Conclusion 33
Bibliography 34
[1] M.S. Alouini, and A.J. Goldsmith, “Adaptive Modulation over Nakagami Fading Channels,” Kluwer J. Wireless Commun., vol.
13, no. 1/2, pp. 119–143, May 2000.
[2] J. Chen, W.K. Tan, C.C. Wang, “MCAS: a macrocell channel allocation scheme for broadband wireless access networks,”
WiMob’2005, vol. 1, pp. 107–114, Aug. 2005.
[3] K. Didem, G. Li, and H. Liu, “Computationally Efficient Bandwidrh Allocation and Power Control for OFDMA,” IEEE Trans.
Wirel. Commun., vol. 2, no. 6, pp. 1150–1158, Nov. 2003.
[4] IEEE 802.16 Working Group, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed
Broadband Wireless Access Systems,” IEEE Std. 802.16-2001, Dec. 2001.
[5] IEEE 802.16 Working Group, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed
Broadband Wireless Access SystemsXAmendment 2: Medium Access Control Modifications and Additional Physical Layer
Specifications for 2–11 GHz,” IEEE Std. 802.16a, Apr. 2003.
[6] IEEE 802.16 Working Group, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed
Broadband Wireless Access Systems,” IEEE Std. 802.16-2004, Oct. 2004.
[7] IEEE 802.16 Working Group, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and
Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed
and Mobile Operation in Licensed Bands and Corrigendum 1,” IEEE Std. 802.16e-2005, Feb. 2006.
[8] F. Ohrtman, WiMax Handbook - Building 802.16 Wireless Networks, McGrew-Hill, May 2005.
[9] S.-T. Sheu, Y. Tsai, and J. Chen, “MR2RP: The Multi-Rate and Multi- Range Routing Protocol for IEEE 802.11 Ad Hoc Wireless
Networks,” ACM/Kluwer Wireless Networks., vol. 9, no. 2, pp. 165V177, Mar. 2003.
[10] Min Cao, Wenchao Ma, Qian Zhang, Xiaodong Wang and Wenwu Zhu “Modelling and Performance Analysis of the Distributed
Scheduler in IEEE 802.16 Mesh Mode” ACM/MobiHoc05., May 25V27, 2005.
[11] Hung-Yu Wei, Samrat Ganguly, Rauf Izmailov and Zygmunt J. Haas “Interference-Aware IEEE 802.16 WiMax Mesh Networks”
IEEE Vehicular Technology Conference., May 29-June 1, 2005.
[12] Giuseppe Bianchi “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected
Areas in Communications., vol 18, no.3, Mar 2000.
[13] Frederico Cali, Marco Conti and Enrico Gregori “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical
Throughput Limit” IEEE/ACM Transactions on Networking., vol 8, no.6, Dec 2000.
[14] Federico Cali, Marco conti and Enrico Gregori “IEEE 802.11 Protocol: Design and Performance Evaluation of an Adaptive
Backoff Mechanism” IEEE Journal on Selected Areas in Communications., vol 18,no.9 ,Sep 2000.
[15] Byung-Jae, Nah-Oak Song and Leonard E. Miller “Performance Analysis of Exponential Backoff” IEEE/ACM Transactions on
Networking., vol 13, no.2, Apr 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔