跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 01:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫啟欽
研究生(外文):Chi-Chin, Sun
論文名稱:人類輪部上皮細胞與羊膜之體外共同培養模式的分子機制之探討
論文名稱(外文):Molecular mechanisms underlying ex vivo expansion of human limbal epithelial cells cultivated on human amniotic membrane
指導教授:楊春茂楊春茂引用關係
指導教授(外文):Chuen-Mao, Yang
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:189
中文關鍵詞:羊膜細胞凋亡上皮生長因子細胞外基質integrin介白素1接受體拮抗劑輪部上皮細胞基質金屬蛋白酶mitogen-activated protein kinasenuclear factor-kappaBphosphatidylinositide 3-kinaseprotein kinase C幹細胞
外文關鍵詞:amniotic membraneapoptosisepidermal growth factorextracellular matrixintegrininterleukin-1 receptor antagonistlimbal epithelial cellsmatrix metalloproteinasemitogen-activated protein kinasenuclear factor-kappaBphosphatidylinositide 3-kinaseprotein kinase Cstem cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
眾所周知,眼角膜上皮幹細胞 (Stem cells) 所在的位置介於解剖學上角膜與結膜之間,也就是所謂的輪部 (Limbus)。在過去,藉由自體或異體的輪部移植再加上羊膜 (Amniotic membrane) 移植,我們已經可以成功地治療因化學藥物灼傷、熱灼傷、眼類天疱瘡 (Ocular cicatricial pemphigoid)、或史蒂芬氏強生症候群 (Stevens-Johnson syndrome) 導致眼角膜輪部幹細胞缺損 (Limbal stem cell deficiency, LSCD) 的病患。有報告指出當進行體外輪部上皮細胞培養時,羊膜本身是一個相當理想的幹細胞壁龕 (Niche)。最近的研究顯示培養於羊膜上的輪部上皮細胞可以成功地重建由於輪部幹細胞缺損而破壞的眼表層組織。然而,此一培養模式維持角膜上皮細胞存活能力的分子機制至今仍未十分明瞭。
當輪部上皮細胞於羊膜上培養時會牽涉到包括入侵、移行、以及增殖等一系列複雜的過程。Matrix metalloproteinases (MMPs),特別是角膜上皮細胞生成用以分解細胞外基質的蛋白水解酶MMP-2及 MMP-9,已經被證實在角膜及水晶體上皮細胞移行的過程中扮演主要的調節角色。因此,在第一個部分我們要探討於此一細胞培養模式中MMP-9的表現及其重要角色。由zymography的結果得知無論是否與羊膜一起培養,MMP-9蛋白質表現量呈現一時間依存性的增加。然而,具活性的MMP-9只在羊膜組中表現並於培養第二週起漸增。經校正後平均MMP-9蛋白質表現以輪部上皮細胞培養於完整羊膜組者最高,分別為培養於去上皮羊膜組及無羊膜組的2.76 +/- 0.69倍及 4.25 +/- 0.30倍。由RT-PCR的結果也證實在完整羊膜組中MMP-9 mRNA的表現亦較其他兩組為高。根據免疫組織化學染色結果顯示MMP-9蛋白表現主要集中在輪部上皮細胞。當進一步以MMPs的抑制劑GM6001以及專一性的MMP-9抗體處理培養於完整羊膜上的輪部上皮細胞一星期後,我們發現細胞的生長受到抑制,同時MMP-9的活性也明顯降低。相反的,以MMP-9的抗體處理無羊膜的輪部上皮細胞時卻不會影響其生長。這部分的結果顯示當輪部上皮細胞培養在完整羊膜上時,MMP-9的表現不但隨時間增加,也與細胞的生長密切相關。這同時也暗示了細胞與其間質之交互作用在此一培養模式的重要性。
許多文獻指出細胞內的訊息傳遞路徑諸如MAPK及PI3-K/Akt等的活化對於細胞的移行、分化以及增殖等生理功能的調節相當重要。因此,接下來我們想瞭解在此一培養模式中究竟有那些細胞內的訊息傳遞路徑參與調控MMP-9的表現。由原位 (in situ) zymography的結果發現當輪部上皮細胞培養在完整羊膜上時,MMP-9的表現在細胞移行的前端相對較多。以上皮生長因子接受體 (EGFR) 的抑制劑AG1478、β4 integrin的抗體、PKC的抑制劑Ro318220和GÖ6976、PI3-K的抑制劑LY294002和Wortmannin、MEK1/2的抑制劑U0126,及JNK的抑制劑SP600125處理培養於完整羊膜上的輪部上皮細胞一星期後,我們可以明顯發現細胞的生長受到抑制;但是加入p38 MAPK的抑制劑SB202190時細胞的生長不受影響。然而,zymography的結果卻顯示MMP-9的活性會被LY294002及Wortmannin抑制,但不會受U0126和SB202190的影響。RT-PCR也印證了相同的結果。文獻指出PI3-K/Akt可以藉由其下游轉錄因子NF-kappaB的核轉位作用調控許多基因的表現,因此我們進一步探討PI3-K/Akt/NF-kappaB的訊息傳遞路徑是否調控MMP-9的表現。免疫螢光染色法證實LY294002同時抑制了Akt的磷酸化以及NF-kappaB的核轉位。此外,NF-kappaB的抑制劑Helenalin也會抑制輪部上皮細胞的生長;而由zymography、RT-PCR及免疫螢光染色的結果亦顯示出MMP-9的表現也會受到Helenalin抑制。綜合以上結果可知當輪部上皮細胞培養在完整羊膜上時,雖然PI3-K以及MAPKs均可影響細胞的生長,但是只有PI3-K/Akt/NF-kappaB的訊息傳遞路徑參與調控MMP-9的表現。
最近的研究指出當輪部上皮細胞培養在完整羊膜上時,其特殊的輪部上皮細胞性質得以保存。且不同的培養基質會引導上皮細胞走向不同的分化型態。然而,在此一培養模式中,究竟是那些因子產生釋放出來?又負責執行那些功能?這是我們接下來亟欲探討的主題。藉由Annexin V-FITC 螢光染色法,我們發現培養於完整羊膜上的輪部上皮細胞其細胞凋亡 (Apoptosis) 的數目顯然比沒有培養在羊膜上的少很多。為了找出可能的 ”抗細胞凋亡因子”,我們進行cDNA微矩陣分析。由結果得知當細胞培養於完整羊膜上時,interleukin-1 receptor antagonist (IL-1RA) 的表現明顯增加。這一點可從RT-PCR、real-time quantitative PCR (Q-PCR)以及ELISA均得到一致的結果加以印證。除此之外,當在無羊膜的輪部上皮細胞外加入重組的IL-1RA 蛋白時,可以觀察到細胞凋亡的數目明顯減少。如果我們把外源性IL-1 RA的中和抗體加入培養在完整羊膜上的輪部上皮細胞時,則會誘發細胞凋亡的現象。這些結果顯示完整的羊膜可以防止培養於其上的輪部上皮細胞進行細胞凋亡,而IL-1RA在輪部上皮細胞和完整羊膜接觸且產生交互作用的過程中可能扮演著”抗細胞凋亡”的媒介角色之一。
綜合以上結果,我們發現當輪部上皮細胞與羊膜一起培養時,MMP-9蛋白質表現量呈現一時間依存性的增加,其表現會受到PI3-K訊息傳遞路徑的調控,我們推測MMP-9的表現可能在輪部上皮細胞的生長中扮演樞紐的角色。同時,我們也進一步證實輪部上皮細胞在羊膜上生長時,可能受到integrin和上皮生長因子(epidermal growth factor,EGF) 的調控。因此,本研究將有助於瞭解在羊膜上培養輪部上皮細胞的模式中,關於MMP-9表現及其分子調控之機制。此外,IL-1RA “抗細胞凋亡”的新角色在未來也可以應用在組織工程上,治療各種眼表層的疾病。
Stem cells (SCs) of the corneal epithelium have been found to be located exclusively at the limbus—that is, the anatomical junction between the cornea and the conjunctiva. Together with limbal auto- or allo-graft, amniotic membrane (AM) transplantation successfully reconstructs the ocular surface in patients with limbal stem cell deficiency (LSCD) secondary to chemical or thermal burns, ocular cicatricial pemphigoid and Stevens-Johnson syndrome. It has been proposed that AM itself may serve as an ideal “niche” to support the ex vivo expanded limbal epithelial cells (LECs). Recent studies have also shown that ex vivo expanded LECs cultivated on AM are capable of restoring the corneal surface with LSCD. However, the molecular mechanisms underlying maintenance of survival ability in this culture model are not fully understood.
Outgrowth of LECs on AM involves serial and complex processes, including invasion, migration, and proliferation. Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9, the primary matrix-degrading enzymes produced by the corneal epithelium, have been shown to play a key role in regulating cell migration of the corneal and lens epithelia. In the first part of the present study, we investigated the expression and pivotal role of MMP-9 in this culture model by zymographic, RT-PCR, and immunohistochemical analyses. The expression of MMP-9 in cultures with or without AM all increased in a time-dependent manner. However, the active form of MMP-9 emerged only in cultures on AM from the second week. The averaged corrected ratio of MMP-9 expression in cultures on intact AM (preserving amniotic epithelial cells; iAM) versus those on denuded AM (removing amniotic epithelial cells; deAM) or plastic dishes was 2.76 +/- 0.69- or 4.25 +/- 0.30-fold, respectively. MMP-9 transcripts were up-regulated in cultures on iAM compared with those of the other two culture conditions. Immunohistochemical staining demonstrated that the MMP-9 protein was located on the LECs. Up-regulation of MMP-9 associated with limbal outgrowth was significantly attenuated by both MMPs inhibitor GM6001 and MMP-9 antibody, consistent with the inhibition of MMP-9 activity. In contrast, the sizes of limbal outgrowth were not different between the control and MMP-9 antibody-treated plastic dishes. These results demonstrated that MMP-9 not only was up-regulated, it was also involved in the outgrowth of LECs. It also suggests that cell-cell matrix interaction is involved in the expansion of LECs on iAM.
Several lines of evidence have indicated that activation of intracellular signaling pathways such as mitogen-activated protein kinases (MAPKs) and phosphatidylinostiol 3-kinase (PI3-K)/Akt cascades are critical to regulate several cellular functions, including migration, differentiation, and proliferation. Therefore, in the second part of the study, we looked into the signaling pathways mediating outgrowth of LECs and MMP-9 expression in this model. By using in situ zymography, we found that MMP-9 was preferentially expressed at leading edge of limbal epithelial outgrowth. AG1478 (EGFR inhibitor) at 1 µM, β4 integrin antibody at 8µg/ml, Ro318220 at 10 µM and GÖ6976 at 1 µM (PKC inhibitors), LY294002 as well as Wortmannin (PI3-K inhibitors) at 30 µM, Helenalin (NF-kappaB inhibitor) at 10 µM, U0126 (MEK1/2 inhibitor) at 10 µM and SP600125 (c-Jun N-terminal kinase (JNK) inhibitor) at 10 µM significantly suppressed the expansion of LECs on iAM as compared to that of control group, whereas the outgrowth was not inhibited by 30 µM of SB202190 (p38 MAPK inhibitor). However, gelatin zymography demonstrated that enzymatic activity of MMP-9 was attenuated by LY294002, Wortmannin and Helenalin, but not affected by U0126 and SB202190, which was confirmed by the results of RT-PCR. Furthermore, LY294002 also down-regulated phosphorylated-Akt expression and NF-kappaB nuclear translocation of LECs grown on iAM as evidenced by immunofluorescent study. Taken together, these results indicate that although both PI3-K and MAPK pathways are involved in limbal outgrowth; however, only PI3-K/Akt/NF-kappaB signaling regulates MMP-9 expression in ex vivo expansion of LECs on iAM.
Recent studies indicate that iAM preserves the limbal epithelial phenotype and distinct epithelial morphologies are noted among various culture matrices. However, the factors responsible for the maintenance of cell survival during the interaction between LECs and iAM were not well understood. Therefore, the third part of the present study focused on identifying the roles of these candidate factor(s). Using Annexin V-FITC staining, we found that human LECs expanded on intact human AM demonstrated lesser apoptotic cells as compared with those on plastic dishes. To identify the anti-apoptotic factors, we performed cDNA microarray analysis and showed that interleukin-1 receptor antagonist (IL-1RA) was over-expressed in cultures on iAM, which was confirmed by RT-PCR, real-time quantitative PCR (Q-PCR) and ELISA. In addition, we also noted that the phenomenon of apoptosis detected in cultures on plastic dishes could be reversed by adding recombinant IL-1RA protein into the media, whereas apoptosis of LECs cultivated on iAM could be induced by addition of exogenous IL-1 RA neutralizing antibody. These results demonstrated that intact human AM may prevent cultured human LECs from undergoing apoptosis. IL-1RA might be one of candidate mediators to exert as an anti-apoptotic molecule during the interaction between human LECs and intact human AM.
In summary, we found that MMP-9 expression was up-regulated in a time-dependent manner during ex vivo expansion of human limbal explants on iAM, which might play a key element during outgrowth of LECs. We next elucidated, at least in part, that PI3-K, but not p42/p44 MAPK regulated MMP-9 expression in this model. We also established significant roles of integrin- and EGF-related signals in this culture system. Finally, by using cDNA microarray analysis, we identified a naturally occurring cytokine, IL-1RA, as an anti-apoptotic molecule during the interaction between LECs and iAM, thus disclosing a new therapeutic target for tissue engineering in the treatment of ocular surface disorders.
Table of Contents
Page
Table of Contents (目錄)......................................vi
Abbreviations (縮寫表).......................................vii
Abstract in Chinese (中文摘要).................................x
Abstract in English (英文摘要)................................xv
CHAPTER 1 INTRODUCTION.....................................1
SECTION 1. Background and Significance.......................2
SECTION 2. Specific Aims....................................23
SECTION 3. Figures and Tables...............................24
CHAPTER 2 MATERIALS AND METHODS...........................35
CHAPTER 3 RESULTS.........................................48
SECTION 1. Role of Matrix Metalloproteinase-9 in Ex Vivo
Expansion of Human Limbal Epithelial Cells
Cultured on Human Amniotic Membrane..............49
SECTION 2. Signaling Pathways Involved in Ex Vivo Expansion
of Human Limbal Epithelial Cells Cultured on
Human Amniotic Membrane..........................75
SECTION 3. Interleukin-1 Receptor Antagonist Prevents
Apoptosis in Ex Vivo Expansion of Human Limbal
Epithelial Cells Cultivated on Human Amniotic
Membrane........................................127
CHAPTER 4 CONCLUSION AND PERSPECTIVES....................158
REFERENCES..................................................164
PUBLICATIONS................................................188
Adams JC, Watt FM. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha5beta1 integrin loss from the cell surface. Cell. 1990;63:425–435.
Adinolfi M, Akle CA, McColl I, et al. Expression of HLA antigens, β2–microglobulin and enzymes by human amniotic membrane. Nature. 1982;295:325–327.
Akle CA, Adinolfi M, Welsh KI, et al. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2:1003–1005.
Alio JL, Abad M, Scorsetti DH. Preparation, indications and results of human amniotic membrane transplantation for ocular surface disorders. Expert Rev Med Devices. 2005;2:153–160.
Amino S, Itakura M, Ohnishi H, et al. Nerve growth factor enhances neurotransmitter release from PC12 cells by increasing Ca2+-responsible secretory vesicles through the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. J Biochem (Tokyo). 2002;131:887–894.
Azuara-Blanco A, Pillai CT, Dua HS. Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol. 1999;83:399–402.
Barnabe-Heider F, Miller FD. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci. 2003;23:5149–5160.
Basti S, Rao SK. Current status of limbal conjunctival autograft. Curr Opin Ophthalmol. 2000;11:224–232.
Baum J. Thygeson lecture. Amniotic Membrane Transplantation: Why is it effective? Cornea. 2002;21:339–341.
Block ER, Matela AR, SundarRaj N, et al. Wounding induces motility in sheets of corneal epithelial cells through loss of spatial constraints: role of heparin-binding epidermal growth factor-like growth factor signaling. J Biol Chem. 2004;279:24307–24312.
Bouchard CS, John T. Amniotic membrane transplantation in the management of severe ocular surface disease: indications and outcomes. The Ocular Surface. 2004;2:201–211.
Boudreau N, Sympson CJ, Werb Z, et al. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995;267:891–893.
Boudreau N, Werb Z, Bissell MJ. Suppression of apoptosis by basement membrane requires 3-D tissue organization and withdrawal from the cell cycle. Proc Natl Acad Sci U S A. 1996;93:3500–3513.
Brodie C, Bogi K, Acs P, et al. Protein kinase C-epsilon plays a role in neurite outgrowth in response to epidermal growth factor and nerve growth factor in PC12 cells. Cell Growth Differ. 1999;10:183–191.
Carter WG, Ryan MC, Gahr PJ. Epiligrin, a new cell adhesion ligand for integrin alpha3beta1 in epithelial basement membranes. Cell. 1991;65:599–610.
Chen JJ, Tseng SC. Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci. 1990;31:1301–1314.
Chen JJ, Tseng SC. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci. 1991;32:2219–2233.
Chen Z, de Paiva CS, Luo L, et al. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells. 2004;22:355– 366.
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159.
Clark AF. New discoveries on the roles of matrix metalloproteinases in ocular cell biology and pathology. Invest Ophthalmol Vis Sci. 1998;39:2514–2516.
Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. Dev Biol. 1962;237:1555–1562.
Dana MR, Yamada J, Streilein JW. Topical interleukin 1 receptor antagonist promotes corneal transplant survival. Transplantation. 1997;63:1501–1507.
Danforth DN, Hull RW. The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion. Am J Obstet Gynecol. 1958;75:536–547.
Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–2927.
Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229:560–561.
Davis JW. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J. 1910;15:307.
Daya SM, Ilari L. Living related conjunctival limbal allograft for the treatment of stem cell deficiency. Ophthalmology. 2001;108:126– 133.
de Rotth A: Plastic repair of conjunctival defects with fetal mebranes. Arch Ophthalmol. 1940;23:522–525.
DiPersio CM, van der Neut R, Georges-Labouesse E, et al. Alpha3beta1 and alpha6beta4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J Cell Sci. 2000;113:3051–3062.
Dogru M, Tsubota K. Current concepts in ocular surface reconstruction. Semin Ophthalmol. 2005;20:75–93.
Dripps DJ, Brandhuber BJ, Thompson RC, et al. Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J Biol Chem. 1991;266:10331–10336.
Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44:415–425.
Dua HS, Gomes JA, King AJ, et al. The amniotic membrane in ophthalmology. Surv Ophthalmol. 2004;49:51–77.
Dua HS, Gomes JA, Singh A. Corneal epithelial wound healing. Br J Ophthalmol. 1994;78:401–408.
Ebato B, Friend J, Thoft RA. Comparison of central and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci. 1987;28:1450–1456.
Espana EM, Grueterich M, Ti SE, et al. Phenotypic study of a case receiving a keratolimbal allograft and amniotic membrane for total limbal stem cell deficiency. Ophthalmology. 2003;110:481–486.
Espana EM, Grueterich M, Touhami A, Tseng SCG. Corneal stromal changes following reconstruction by ex vivo expanded limbal epithelial cells in rabbits with total limbal stem cell deficiency. Br J Ophthalmol. 2003;87:1509–1514.
Falcioni R, Antonini A, Nistico P, et al. α6β4 and α6β1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res. 1997;236:76–85.
Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–18632.
Fidel PL Jr, Romero R, Ramirez M, et al. Interleukin-1 receptor antagonist (IL-1ra) production by human amnion, chorion, and decidua. Am J Reprod Immunol. 1994;32:1–7.
Fini M E, Cook JR, Mohan R. Proteolytic mechanisms in corneal ulceration and repair. Arch Dermatol Res. 1998;290:S12–23.
Fini ME, Girard MT. Expression of collagenolytic/gelatinolytic metalloproteinases by normal cornea. Invest Ophthalmol Vis Sci. 1990;31:1779–1788.
Franke TF, Hornik CP, Segev L, et al. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22:8983–8998.
Frati L, Daniele S, Delogu A, et al. Selective binding of the epidermal growth factor and its specific effects on the epithelial cells. Exp Eye Res. 1972;14:135–141.
Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem. 1998;67:481–507.
Fukuda K, Chikama T, Nakamura M, et al. Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea. 1999;18:73–79.
Gambaletta D, Marchetti A, Benedetti L, et al. Cooperative signaling between α6β4 integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase dependent invasion. J Biol Chem. 2000;275:10604–10610.
Giannoukakis N, Rudert WA, Ghivizzani SC, et al. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1β-induced β-cell impairment and activation of islet cell apoptosis in vitro. Diabetes. 1999;48:1730–1736.
Gipson IK. The epithelial basement membrane zone of the limbus. Eye. 1989;3:132–140.
Gipson IK, Inatomi T. Extracellular matrix and growth factors in corneal wound healing. Curr Opin Ophthalmol. 1995;6:3–10.
Granowitz EV, Clark BD, Mancilla J, et al. Interleukin-1 receptor antagonist competitively inhibits the binding of interleukin-1 to the type II interleukin-1 receptor. J Biol Chem. 1991;266:14147–14150.
Graves JD, Draves KE, Craxton A, et al. Involvement of stress activated protein kinase and p38 mitogen-activated protein kinase in mIgM-induced apoptosis of human B lymphocytes. Proc Natl Acad Sci USA. 1996;93:13814–13818.
Grossman HB, Lee C, Bromberg J, et al. Expression of the alpha6beta4 integrin provides prognostic information in bladder cancer. Oncol Rep. 2000;7:13–16.
Grueterich M, Espana EM, Touhami A, et al. Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology. 2002a;109:1547–1552.
Grueterich M, Espana E, Tseng SC. Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Invest Ophthalmol Vis Sci. 2002b;43:63–71.
Grueterich M, Espana EM, Tseng SC. Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol. 2003a;48:631–646.
Grueterich M, Espana EM, Tseng SC. Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane with and without a 3T3 fibroblast feeder layer. Invest Ophthalmol Vis Sci. 2003b;44:4230–4236.
Grueterich M, Tseng SC. Human limbal progenitor cells expanded on intact amniotic membrane ex vivo. Arch Ophthalmol. 2002;120:783–790.
Guo M, Grinnell F. Basement membrane and human epidermal differentiation in vitro. J Invest Dermatol. 1989;93:372–378.
Gupta S, Afaq F, Mukhtar H, et al. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287:914–920.
Haase I, Hobbs RM, Romero MR, et al. A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis. J Clin Invest. 2001;108:527–536.
Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development. 1989;106:619–633.
Hammer A, Hutter H, Blaschitz A, et al. Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am Reprod Immunol. 1997;37:161–171.
Hanks SK, Calalb MB, Harper MC, et al. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell spreading on fibronectin. Proc Natl Acad Sci USA. 1992;89:8487–8491.
Hao Y, Ma DH, Hwang DG, et al. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea.2000;19:348–352.
He H, Cho HT, Li W, et al. Signaling-transduction pathways required for ex vivo expansion of human limbal explants on intact amniotic membrane. Invest Ophthalmol Vis Sci. 2006;47:151–157.
Heiligenhaus A, Bauer D, Meller D, et al. Improvement of HSV-1 necrotizing keratitis with amniotic membrane transplantation. Invest Ophthalmol Vis Sci. 2001;42:1969–1974.
Hernandez Galindo EE, Theiss C, Steuhl KP, et al. Gap junctional communication in microinjected human limbal and peripheral corneal epithelial cells cultured on intact amniotic membrane. Exp Eye Res. 2003a;76:303–314.
Hernandez Galindo EE, Theiss C, Steuhl KP, et al. Expression of Delta Np63 in response to phorbol ester in human limbal epithelial cells expanded on intact human amniotic membrane. Invest Ophthalmol Vis Sci. 2003b;44:2959–2965.
His BL, Samaon M, Grivaux C, et al. Topographical expression of class I major histocompatibility complex antigens on human amniotic epithelium. J Reprod Immunol. 1988;13:183–191.
Holland EJ, Schwartz GS. The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea. 1996;15:549–556.
Hotchin NA, Gandarillas A, Watt FM. Regulation of cell surface beta1 integrin levels during keratinocyte terminal differentiation. J Cell Biol. 1995;128:1209–1219.
Hotchin NA, Hall A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J Cell Biol. 1995;131:1857–1865.
Houlihan JM, Biro PA, Harper HM, et al. The human amniotic membrane is a site of MHC class 1b expression: evidence for the expression of HLA-E and HLA-G. J Immunol. 1995;154:565–574.
Hundle B, McMahon T, Dadgar J, et al. Overexpression of protein kinase C enhances nerve growth factor-induced phosphorylation of mitogen-activated protein kinases and neurite outgrowth. J Biol Chem. 1995;270:30134-30140.
Hunt JS, Andrews GK, Fishback JL, et al. Amnion membrane epithelial cells express class I HLA and contain class I HLA mRNA. J Immunol. 1988;140:2790–2795.
Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911–1912.
Johnson MD, Okedli E, Woodard A, et al. Evidence for phosphatidylinositol 3-kinase-Akt-pS6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in meningioma cells. J Neurosurg. 2002;97:668–675.
Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73:713–724.
Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–310.
Kennedy MC, Rosenbaum JT, Brown J, et al. Novel production of interleukin-1 receptor antagonist peptides in normal human cornea. J Clin Invest. 1995;95:82–88.
Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96:709–722.
Khodadoust AA, Silverstein AM, Kenyon KR, et al. Adhesion of regenerating corneal epithelium and the role of basement membrane. Am J Ophthalmol. 1968;65:339–348.
Kikkawa Y, Sanzen N, Fujiwara H, et al. Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by α3β1, α6β1 and α6β4 integrins. J Cell Sci. 2000;113:869–876.
Kim JC, Tseng SC. The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J Ophthalmol. 1995a;9:32–46.
Kim JC, Tseng SC. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea. 1995b;14:473–484.
Kim JS, Kim JC, Na BK, et al. Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res. 2000;70:329–337.
Kinoshita S, Nakamura T. Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction. Artif Organs. 2004;28:22–27.
Koizumi N, Fullwood NJ, Bairaktaris G, et al. Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest Ophthalmol Vis Sci. 2000a;41:2506–2513.
Koizumi N, Inatomi T, Quantock AJ, et al. Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea. 2000b;19:65–71.
Koizumi NJ, Inatomi TJ, Sotozono CJ, et al. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000c;20:173–177.
Koizumi N, Inatomi T, Suzuki T, et al. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology. 2001a;108:1569–1574.
Koizumi N, Inatomi T, Suzuki T, et al. Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Arch Ophthalmol. 2001b;119:298–300.
Koizumi S, Contreras ML, Matsuda Y, et al. K-252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J Neurosci. 1988;8:715–721.
Kornberg L, Earp HS, Parsons JT, et al. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem. 1992;267:23439–23442.
Kruse FE, Joussen AM, Rohrschneider K, et al. Cryopreserved human amniotic membrane for ocular surface reconstruction. Graefes Arch Clin Exp Ophthalmol. 2000;238:68–75.
Kubo M, Sonoda Y, Muramasu R, et al. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42:1539–1546.
Kugler, A. Matrix metalloproteinases and their inhibitors. Anticancer Res. 1999;19:1589–1592.
Kurpakus MA, Stock EL, Jones JC. Expression of the 55-kD/64-kD corneal keratins in ocular surface epithelium. Invest Ophthalmol Vis Sci. 1990;31:448–456.
Kurpakus MA, Stock EL, Jones JC. The role of the basement membrane in differential expression of keratin proteins in epithelial cells. Dev Biol. 1992;150:243–255.
Kwitko S, Marinho D, Barcaro S, et al. Allograft conjunctival transplantation for bilateral ocular surface disorders. Ophthalmology. 1995;102:1020–1025.
LaFlamme SE, Auer KL. Integrin signaling. Semin Cancer Biol. 1996;7:111–118.
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 2006;18:276–284.
Lavker RM, Dong G, Cheng SZ, et al. Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes. Invest Ophthalmol Vis Sci. 1991;32:1864–1875.
Lavker RM, Tseng SC, Sun TT. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res. 2004;78:433–446.
Lee SB, Li DQ, Tan DT, et al. Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res. 2000;20:325–334.
Lee SH, Tseng SC. Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol. 1997;123:303–312.
Legrand C, Polette M, Tournier JM, et al. uPA/plasmin system mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res. 2001;264:326–336.
Letko E, Stechschulte SU, Kenyon KR, et al. Amniotic membrane inlay and overlay grafting for corneal epithelial defects and stromal ulcers. Arch Ophthalmol. 2001;119:659–663.
Li DQ, Lokeshwar BL, Solomon A, et al. Regulation of MMP-9 production by human corneal epithelial cells. Exp Eye Res. 2001;73:449–459.
Li DQ, Tseng SC. Three patterns of cytokine expression potentially involved in epithelial-fibroblast interactions of human ocular surface. J Cell Physiol. 1995;163:61–79.
Li Q, Verma IM. NF-kappaB regulation in the immune system, Nat Rev Immunol. 2002;2:725–734.
Li W, He H, Kuo CL, et al. Basement membrane dissolution and reassembly by limbal corneal epithelial cells expanded on amniotic membrane. Invest Ophthalmol Vis Sci. 2006;47:2381–2389.
Liang YC, Huang YT, Tsai SH, et al. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999;20:1945–1952.
Lin A, Karin M. NF-kappaB in cancer: a marked target. Semin Cancer Biol. 2003;13:107–114.
Lindberg K, Brown ME, Chaves HV, et al. In vitro propagation of human ocular surface epithelial cells for transplantation. Invest Ophthalmol Vis Sci. 1993;34:2672–2679.
Mann I. A study of epithelial regeneration in the living eye. Br J Ophthalmol. 1944;28:26–40.
Matsubara M, Girard MT, Kublin CL, et al. Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodeling cornea. Dev Biol. 1991;147:425–439.
Meller D, Pires RT, Tseng SC. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol. 2002;86:463–471.
Meller D, Tseng SC. Conjunctival epithelial cell differentiation on amniotic membrane. Invest Ophthalmol Vis Sci. 1999;40:878–886.
Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J. 1998;332:281–292.
Mercurio AM, Rabinovitz I. Towards a mechanistic understanding of tumor invasion—Lessons from the alpha6beta4 integrin. Semin Cancer Biol. 2001;11:129–141.
Mercurio AM, Rabinovitz I, Shaw LM. The α6β4 integrin and epithelial cell migration. Curr Opin Cell Biol. 2001;13:541–545.
Meredith JE Jr, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4:953–961.
Miyamoto S, Teramoto H, Gutkind JS, et al. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol. 1996;135:1633–1642.
Mohan R, Chintala SK, Jung JC, et al. Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem. 2002;277:2065–2072.
Moses MA. The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells. 1997;15:180–189.
Nakamura T, Inatomi T, Sotozono C, et al. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol. 2004a;88:1280–1284.
Nakamura T, Yoshitani M, Rigby H, et al. Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci. 2004b;45:93–99.
Nesic O, Xu GY, McAdoo D, et al. IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma. 2001;18:947–956.
Ni J, Abrahamson M, Zhang M, et al. Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family Z cystatins. J Biol Chem. 1997;272:10853–10858.
Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351:1187–1196.
O’Connor KL, Nguyen BK, Mercurio AM. RhoA function in lamellae formation and migration is regulated by the α6β4 integrin and cAMP metabolism. J Cell Biol. 2000;148:253–258.
O'Driscoll KR, Teng KK, Fabbro D, et al. Selective translocation of protein kinase C-delta in PC12 cells during nerve growth factor-induced neuritogenesis. Mol Biol Cell. 1995;6:449–58.
Paling NR, Wheadon H, Bone HK, et al. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinasedependent signaling. J Biol Chem. 2004;279:48063–48070.
Park WC, Tseng SC. Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci. 2000;41:2906–2914.
Pawson T, Gish GD. SH2 and SH3 domains: from structure to function. Cell. 1992;71:359–362.
Pawson T, Schlessingert J. SH2 and SH3 domains. Curr Biol. 1993;3:434–442.
Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999;145:769–782.
Pellegrini G, Traverso CE, Franzi AT, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:990–993.
Plopper GE, McNamee HP, Dike LE, et al. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 1995;6:1349–1365.
Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–1020.
Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology. 1995;102:1476–1485.
Pullan S, Wilson J, Metcalfe A, et al. Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium, J Cell Sci. 1996;109:631–642.
Rabinovitz I, Toker A, Mercurio AM. Protein kinase C-dependent mobilization of the alpha6beta4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J Cell Biol. 1999;146:1147–1160.
Rao TV, Chandrasekharam V. Use of dry human and bovine amnion as a biological dressing. Arch Surg. 1981;116:891–896.
Ren H, Wilson G. Apoptosis in the corneal epithelium. Invest Ophthalmol Vis Sci. 1996;37:1017–1025.
Rena T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850.
Rolli M, Fransvea E, Pilch J, et al. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:9482–9487.
Saika S, Okada Y, Miyamoto T, et al. Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest Ophthalmol Vis Sci. 2004;45:100–109.
Savage CR, Cohen S. Proliferation of corneal epithelium. Exp Eye Res. 1973;15:361–366.
Schaller MD, Borgman CA, Cobb BS, et al. pp125FAK, a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA. 1992;89:5192–5196.
Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62.
Schofield R. The stem cell system. Biomed Pharmacother. 1983;37:375– 380.
Schwab IR, Reyes M, Isseroff RR. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea. 2000;19:421–426.
Seiki M. Membrane-type matrix metalloproteinases. APMIS. 1999;107:137–143.
Shaw LM, Rabinovitz I, Wang HH, et al. Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell. 1997;91:949–960.
Shimazaki J, Aiba M, Goto E, et al. Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology. 2002;109:1285–1290.
Shimazaki J, Shinozaki N, Tsubota K. Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol. 1998;82:235–240.
Shimazaki J, Yang HY, Tsubota K. Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology. 1997;104:2068–2076.
Shimmura S, Shimazaki J, Ohashi Y, et al. Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea. 2001;20:408–413.
Sippel KC, Ma JJ, Foster CS. Amniotic membrane surgery. Curr Opin Ophthalmol. 2001;12:269–281.
Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002;21:1–14.
Solomon A, Ellies P, Anderson DF, et al. Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology. 2002;109:1159–1166.
Solomon A, Rosenblatt M, Li DQ, et al. Doxycycline inhibition of interleukin-1 in the corneal epithelium. Invest Ophthalmol Vis Sci. 2000;41:2544–2557.
Solomon A, Rosenblatt M, Monroy D, et al. Suppression of interleukin-1α and interleukin-1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol. 2001;85:444–449.
Sorsby A, Haythorne J, Reed H. Further experience with amniotic membrane grafts in caustic burns of the eye. Br J Ophthalmol. 1947;31:409–418.
Sorsby A, Symmons HM. Amniotic membrane grafts in caustic burns of the eye (burns of second degree). Br J Ophthalmol. 1946;30:337–345.
Sounenberg A, Calafat J, Jansen H, et al. Integrin α6/β4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell basement membrane adhesion. J Cell Biol. 1991;113:907–917.
Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA. 1987;84:5034–5037.
Storz P, Toker A. NF-kappaB signaling—an alternate pathway for oxidative stress responses. Cell Cycle. 2003;2:9–10.
Streuli CH, Bailey N, Bissell MJ. Control of mammary epithelial differentiation: basement membrane induces tissue specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol. 1989;115:1383–1395.
Suzuki K, Murtuza B, Smolenski RT, et al. Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation. 2001;104:I-308–I-313.
Talmi YP, Sigler L, Inge E, et al. Antibacterial properties of human amniotic membranes. Placenta. 1991;12:285–288.
Tani T, Karttunen T, Kiviluoto T, et al. Alpha6beta4 integrin and newly deposited laminin-1 and laminin-5 form the adhesion mechanism of gastric carcinoma. Continuous expression of laminins but not that of collagen VII is preserved in invasive parts of the carcinomas: Implications for acquisition of the invading phenotype. Am J Pathol. 1996;149:781–793.
Tennenbaum T, Weiner AK, Belanger AJ, et al. The suprabasal expression of alpha6beta4 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis. Cancer Res. 1993;53:4803–4810.
Ti SE, Anderson D, Touhami A, et al. Factors affecting outcome following transplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits. Invest Ophthalmol Vis Sci. 2002;43:2584–2592.
Ti SE, Grueterich M, Espana EM, et al. Correlation of long-term phenotypic and clinical outcomes following limbal epithelial transplantation cultivated on amniotic membrane in rabbits. Br J Ophthalmol. 2003;88:422–427.
Touhami A, Grueterich M, Tseng SC. The role of NGF signaling in human limbal epithelium expanded by amniotic membrane culture. Invest Ophthalmol Vis Sci. 2002;43:987–994.
Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 2000;343:86–93.
Tsai RJ, Sun TT, Tseng SC. Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits. Ophthalmology. 1990;97:446–455.
Tsai RJ, Tseng SC. Human allograft limbal transplantation for corneal surface reconstruction. Cornea. 1994;13:389–400.
Tsai RJ, Tseng SC. Effect of stromal inflammation on the outcome of limbal transplantation for corneal surface reconstruction. Cornea. 1995;14:439–449.
Tseng SC. Concept and application of limbal stem cells. Eye. 1989;3:141–157.
Tseng SC. Regulation and clinical implications of corneal epithelial stem cells. Mol Biol Rep. 1996;23:47–58.
Tseng SC. Amniotic membrane transplantation for ocular surface reconstruction. Biosci Rep. 2001;21:481–489.
Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-β isoforms, TGF-β receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol. 1999;179:325–335.
Tseng SC, Espana EM, Kawakita T, et al. How does amniotic membrane work? The Ocular Surface. 2004;2:177–187.
Tseng SC, Prabhasawat P, Barton K, et al. Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol. 1998;116:431–441.
Tseng SC, Prabhasawat P, Lee SH. Amniotic membrane transplantation for conjunctival surface reconstruction. Am J Ophthalmol. 1997;124:765–774.
Tsubota K, Satake Y, Kaido M, et al. Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. N Engl J Med. 1999;340:1697–1703.
Tsuji T, Kawada Y, Kai-Murozono M, et al. Regulation of melanoma cell migration and invasion by laminin-5 and alpha3beta1 integrin(VLA-3). Clin Exp Metastasis. 2002;19:127–134.
Uchida S, Inanaga Y, Kobayashi M, et al. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res. 2000;62:585–590.
Ullrich A, Schlessinger J. Signal transduction of receptors with tyrosine kinase activity. Cell. 1990;61:203–212.
van Herendael BJ, Oberti C, Brosens I. Microanatomy of the human amniotic membranes. A light microscopic, transmission and scanning electron microscopic study. Am J Obstet Gynecol. 1978;131:872–880.
Vuori K. Integrin signaling: tyrosine phosphorylation events in focal adhesions. J Membr Biol. 1998;165:191–199.
Wang TH, Lee YS, Chen ES, et al. Establishment of cDNA microarray analysis at the Genomic Medicine Research Core Laboratory (GMRCL) of Chang Gung Memorial Hospital. Chang Gung Med J. 2004;27:243–260.
Wang MX, Gray TB, Park WC, et al. Reduction in corneal haze and apoptosis by amniotic membrane matrix in excimer laser photoablation in rabbits. J Cataract Refract Surg. 2001;27:310–319.
Wei ZG, Lin T, Sun TT, et al. Clonal analysis of the in vivo differentiation potential of keratinocytes. Invest Ophthalmol Vis Sci. 1997;38:753–761.
Wiley L, SundarRaj N, Sun TT, et al. Regional heterogeneity in human corneal and limbal epithelia: an immunohistochemical evaluation. Invest Ophthalmol Vis Sci. 1991;32:594–602.
Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5:2145–2154.
Wong TT, Daniels JT, Crowston JG, et al. MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br J Ophthalmol. 2004;88:868–872.
Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270:1326–1331.
Xu KP, Ding Y, Ling J, et al. Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45:813–820.
Yamada J, Dana MR, Sotozono C, et al. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res. 2003;76:161–167.
Yamamoto Y, Gaynor RB. Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med. 2001;1:287–296.
Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–176.
Zheng WH, Kar S, Quirion R. FKHRL1 and its homologs are new targets of nerve growth factor Trk receptor signaling. J Neurochem. 2002;80:1049–1061.
Zhu AJ, Haase I, Watt FM. Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc Natl Acad Sci USA. 1999;96:6728–6733.
Zieske JD, Takahashi H, Hutcheon AE, et al. Activation of epidermal growth factor receptor during corneal epithelial migration. Invest Ophthalmol Vis Sci. 2000;41:1346–1355.
Zieske JD, Wasson M. Regional variation in distribution of EGF receptor in developing and adult corneal epithelium. J Cell Sci. 1993;106:145–152.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top