跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳妙芬
研究生(外文):Miaofen Chen
論文名稱:影響腫瘤及正常組織細胞對放射治療敏感度的機轉
論文名稱(外文):Molecular mechanisms involved in the radiosensitivities of normal and cancer cells
指導教授:廖順奎廖順奎引用關係
指導教授(外文):Shuen-Kuei Liao
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:143
外文關鍵詞:Radiation sensitivitycaffeic acid phenethyl esterPeroxiredoxin Ilung cancerfree radical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
放射治療是癌症治療中一個主要治療方式,而肺癌的預後不好主要是因為其發現時常已局部侵犯或轉移,而且對放射或化學治療不敏感。因此如何發展出新的方法來抑制肺癌的快速生長及增加對治療敏感度對改進肺癌治療結果是重要的。此外,由於放射治療的主要限制是正常組織的耐受性,而肺炎為胸部放射治療最主要的併發症,因此如何降低放射治療引起的併發症或增加肺部對放射治療的耐受性也是非常重要的。
放射治療可產生反應性氧分子(reactive oxygen species: ROS) ,而且放射治療所產生生物傷害有三分之二是由反應性氧分子造成。而反應性氧分子所造成的氧化壓力在生物體內的發炎反應、去氧核糖核酸的傷害及許多基因的表現皆佔有重要角色。因此細胞內的氧化還原狀態,和細胞增生或死亡及放射治療的反應之間存有密切的相關性。
Peroxiredoxin I (Prx I) 為一大類細胞內的抗氧化劑中的一員,其可降低細胞內反應性氧分子且在很多類腫瘤中皆會過度表現,但Prx I在腫瘤細胞內所扮演的角色並不清楚。在第一章的研究中,我們希望探討Prx I 在肺癌細胞的生長及放射線治療的敏感度所扮演的角色。首先經由免疫組織染色及蛋白質測定證實肺癌腫瘤及細胞株皆有Prx I過度表現,之後利用基因轉植製造出Prx I 表現很低的 A549 (p53+) Prx I antisense (AS) 及H1299 Prx I AS 轉植細胞株,再去觀察它們和A549及H1299 wild type 的差異性。結果在細胞實驗中我们發現抑制Prx I 的表現會造成肺癌細胞的生長速度變慢,尤其是在A549肺癌細胞。此種抑制A549肺癌細胞生長的現象,在裸鼠實驗中得到再次確定。進而探討其機轉,可能是經由p53造成細胞周期進展停滯。因此在沒有p53的H1299腫瘤細胞株,抑制Prx I造成的生長抑制現象並不明顯。此外在裸鼠實驗中發現抑制Prx I也可降低肺癌細胞的侵犯性,其機轉可能是經由降低VEGF 的分泌,但同樣可發現抑制Prx I降低肺癌細胞侵犯性的程度在A549及H1299是不同的,意味著p53可能在其中仍扮演某種角色。抑制Prx I無論在細胞實驗或裸鼠實驗皆發現可增加A549及H1299肺癌細胞放射線治療的敏感度,其機轉包含降低肺癌細胞清除反應性氧分子的能力及降低細胞對損害的去氧核糖核酸的修補能力。經由本次研究結果發現Prx I的表現的確對肺癌細胞的生長、侵犯性及對治療的耐受性扮演重要的角色,而p53則可能是肺癌的預後因子。改變Prx I的表現可能是未來治療肺癌一個新的方向。
有很多文獻指出放射治療對組織的併發症主要是經由放射治療所引起發炎反應造成。一般認為,早期處理其發炎反應有助於降低放射治療併發症的產生。放射治療對去氧核糖核酸的傷害會引發NF-κB的活化,而NF-κB即是調整發炎反應程度的重要決定因子,其可刺激很多發炎基因的表現。咖啡酸苯乙酯(caffeic acid phenethyl ester,以下簡稱 CAPE)是蜂膠中的一種具生物活性的成分,也是NF-κB的抑制因子。第二章的研究主旨即是在探討當接受胸部放射治療時,給予CAPE是否可有效抑制NF-κB的活化並減少肺部發炎反應。在細胞實驗中,我們發現也是抗氧化劑的CAPE可對人類肺癌A549細胞造成明顯的細胞毒性與放射致敏感性,但對正常肺部纖維細胞並不會有此現象。其機轉可能是經由CAPE降低肺癌A549細胞內的NF-κB及GSH所造成。在活體動物實驗中,我們對BALB/c雄性老小鼠有或沒有接受CAPE處理後,接受10 Gy以及20 Gy的全胸腔照射。照射之後,進行NF-κB活化與急性發炎細胞激素的表現分析。結果發現CAPE可降低放射線照射後的發炎激素表現,包含IL-1α,IL-1β, IL-6, TNF-α以及TGF-β。除此之外,在組織學與免疫學的實驗結果顯示,CAPE可減少放射線引起的間質肺炎與TGF-β的表現。經由本研究顯示CAPE可在不造成正常肺部毒性下,減少胸部放射線照射後的連鎖發炎反應。此研究結果,提供了未來有關於合併CAPE與胸部放射線照射,在肺癌治療臨床試驗的理論基礎。
Radiotherapy is an important modality of cancer treatment. The poor prognosis of lung cancer is commonly associated with the advanced stage of the disease and the resistance to chemo- and radiotherapy. Therefore, development of new approaches to overcome rapid growth and radiation resistance of lung cancer cells is critical for improving the outcome of cancer therapy. Furthermore, the cell-killing induced by radiation is not tumor or cell-type specific. The major limitation for radiotherapy is the tolerance of normal tissue. Radiation pneumonitis is a major obstacle of thoracic irradiation. It is therefore important to determine how the incidence of radiation-induced complication might be decreased and how the dose that normal lung can tolerate might be increased.
About two thirds of the biologic damage by x-rays is caused by indirect action of free radicals. Ionizing radiation is capable of generating ROS such as H2O2 and OH. Oxidative stress induced by free radical plays an important role in inflammation, DNA damage and genes expression. The level of ROS generated could determine whether the activated cell will proliferate or undergo apoptosis. There is a close relationship between the cellular redox state, cell fate and the effects of irradiation.
Peroxiredoxins (Prxs) belong to a special antioxidant family which contain essential catalytic cysteine residues and use thioredoxin as electron donor to reduce peroxides. Prx I is a member of the 2-Cys subfamily and is ubiquitously present in cytosol. Prx I can inhibit the activation of NF-κB and reduce the intracellular H2O2 induced by platelet-derived growth factor (PDGF) or tumor necrosis factor-α. Furthermore, Prx I is overexpressed in several tumor types. However, its functions in cancer are largely unknown. In the results described in Chapter I, we examined the role of Prx I in lung cancer cell growth in vitro and in vivo, and its influence on these tumor cells’ sensitivity to irradiation therapy. We demonstrated that the overexpression of Prx I in human lung cancer tissues and cell lines. Decrease of Prx I protein led to similar levels of changes in many biological functions. Both cell lines had less capacity to scavenge ROS, suffered similar higher levels of DNA damage as indicated by 8-oxoguanine, lost much ability to perform NHEJ to repair irradiation-induced damage, and subsequently showed less ability to survive from irradiation as measured by clonogenic assay. However, the p53+ A549 cells and p53- H1299 did show significant differences after Prx I antisense knock down of the protein production. H1299 Prx I antisense transfectant showed less slow down of cell growth in culture, fewer cells arrested in G1 phase, and less sensitive than its A549 counterpart to irradiation treatment, which may be contributed by its lack of p53. Despite these discrepancies between the two cell lines, reduction in Prx I protein did affect lung cancer xenograft metastasic potential and its sensitivity to irradiation. Results of these studies indicated that overexpression of Prx I may be important for lung cancer cell growth, metastasis, repairing of DNA damage, and even resistance to ROS and irradiation. Its interplays with p53 and other tumor survival genes may be good prognosticators for lung patient survival in irradiation therapy. Furthermore, manipulation of Prx I may provide new a direction for therapeutic approaches of lung cancer.
Radiation induces an acute pro-inflammatory response in many normal cells and tissues. Various investigators have demonstrated that radiation-induced proinflammatory cytokines contributed significant complications associated with radiotherapy. The persistent accumulation and activation of immune cells are a hallmark of chronic inflammation and late effects. Early manipulation of inflammatory responses could be useful in modifying subsequent late effect. Moreover, DNA damage induced by irradiation has been reported to activate the NF-κB in cells. NF-κB is a key regulator of immune and inflammatory response and emerged as a decisive factor in the cell response to apoptotic challenge. The putative target genes of NF-κB are mainly involved in immune and inflammatory response. Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of honeybee propolis and a potent and specific inhibitor of NF-κB activation. In the results described in Chapter II, we investigated the efficacy of CAPE in inhibiting NF-κB activation and proinflammatory production induced by irradiation. The data of in vitro study revealed that CAPE, a known antioxidant, induced significant cytotoxicity, apoptosis, and radiosensitization in a human lung adenocarcinoma A549 cell line, in contrast to that noted in normal lung fibroblasts. The mechanism underpinning this differential cytotoxicity and radiosensitization for lung cancer induced by CAPE appears to be related to intracellular NF-κB and GSH, respectively. The results from in vivo study showed that CAPE treatment decreased the expressions of inflammatory cytokines including IL-1α and β, IL-6, TNF-α and TGF-β, after irradiation. Moreover, histological and immunochemical data revealed that CAPE decreased radiation-induced interstitial pneumonitis and TGF-β expression. Taken together, our results suggest that CAPE decreases the cascade of inflammatory responses induced by thoracic irradiation without causing toxicity in normal lung tissue. This provides a rationale for combining CAPE and thoracic radiotherapy for lung cancer treatment in further clinical studies.
Table of Contents
Table of contents--------------------------------------------------------------1
Abbreviations------------------------------------------------------------------5
Abstract------------------------------------------------------------------------ 7
中文摘要-----------------------------------------------------------------------11
Introduction-----------------------------------------------------------------------14
1.1 Radiation and cell death -----------------------------------------------------------------------14
1.2 Reduction oxidation state -----------------------------------------------------------------------16
1.3 Peroxiredoxin I and cancer -----------------------------------------------------------------------18
1.4 Cell cycle-----------------------------------------------------------------------20
1.5 DNA repair -----------------------------------------------------------------------22
1.6 Distant metastasis and angiogenesis-----------------------------------------------------------------------23
1.7 Caffeic acid phenethyl ester (CAPE)-----------------------------------------------------------------------25
1.8 NF-κB -----------------------------------------------------------------------26
1.9 Radiation induced responses of normal tissues and radiation pneumonitis-----------------------------------------------------------------------27
Chapter I: Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression
1. Rationale, experimental models and approaches-----------------------------------------------------------------------30
2. Material and Methods-----------------------------------------------------------------------32
3. Results
3.1 Overexpression of Prx I in human lung cancer tissues and cell lines-----------------------------------------------------------------------39
3.2 Expression of Prx I proteins in Prx I antisense transfected cells and xenograft tumors-----------------------------------------------------------------------39
3.3 Effect of Prx I antisense on cell growth and tumor xenografts growth-----------------------------------------------------------------------40
3.4 Effect of Prx I antisense on cell cycle and apoptosis-----------------------------------------------------------------------41
3.5 Effects of Prx I antisense on radiation sensitivity-----------------------------------------------------------------------42
3.6 Effect of Prx I antisense on intracellular ROS scavenging and on oxidative DNA damage-----------------------------------------------------------------------43
3.7 Effect of Prx I antisense on G2M progression after irradiation-----------------------------------------------------------------------43
3.8 Prx I antisense inhibits in vitro end rejoining-----------------------------------------------------------------------44
3.9 Effect of p53 expression-----------------------------------------------------------------------45
3.10Effect of Prx I expression on spontaneous metastatic properties -----------------------------------------------------------------------45
3.11Prx I antisense modulates bcl-2 and VEGF expression-----------------------------------------------------------------------46
4. Discussion
4.1 Prx I and cancer -----------------------------------------------------------------------47
4.2 The effect on cell growth and apoptosis of Prx I antisense-----------------------------------------------------------------------48
4.3 Prx I and p53-----------------------------------------------------------------------49
4.4 Prx I and metastasis-----------------------------------------------------------------------50
4.5 Prx I antisense and radiosensitivity
4.5.1 ROS and p53 -----------------------------------------------------------------------52
4.5.2 Cell cycle -----------------------------------------------------------------------54
4.5.3 DNA repair -----------------------------------------------------------------------56
5. Conclusion-----------------------------------------------------------------------57
Chapter II: Caffeic acid phenethyl ester decreases acute pneumonitis after irradiation in vitro and in vivo
1. Rationale, experimental models and approaches-----------------------------------------------------------------------59
2. Material and Methods-----------------------------------------------------------------------61
3. Results
3.1 CAPE induces differential growth inhibition and cytotoxicity between A549 and WI-38 cells-----------------------------------------------------------------------69
3.2 Effect of CAPE on the induction of apoptosis -----------------------------------------------------------------------69
3.3 Effect of CAPE on cell cycle progression -----------------------------------------------------------------------70
3.4 CAPE cause no cytotoxicity or radiosensitization in normal lung cells-----------------------------------------------------------------------70
3.5 Sensitization of A549 cells to radiation treatment-----------------------------------------------------------------------71
3.6 Effect of CAPE on intracellular H2O2 and GSH level-----------------------------------------------------------------------71
3.7 Different gene expression profile after CAPE treatment-----------------------------------------------------------------------72
3.8 Confirmation of the expression levels of cyclin B1 and Cox-2 protein-----------------------------------------------------------------------73
3.9 CAPE attenuates NF-κB expression differentially in normal lung and lung cancer cells-----------------------------------------------------------------------73
3.10Effect of CAPE on the radiation-induced expression of proinflammatory cytokines as revealed by RPA and real-time PCR----------------------------------------------74
3.11CAPE attenuates the induction of pulmonary inflammation by irradiation-----------------------------------------------------------------------75
4. Discussion
4.1 Effective dose of CAPE for lung cancer cell line-----------------------------------------------------------------------76
4.2 CAPE and redox state -----------------------------------------------------------------------76
4.3 CAPE and apoptotic machinery-----------------------------------------------------------------------77
4.4 CAPE and radiosensitization for lung cancer-----------------------------------------------------------------------79
4.5 CAPE and NF-κB
4.5.1 Differential cytotoxicity -----------------------------------------------------------------------80
4.5.2 Radiosensitization -----------------------------------------------------------------------81
4.5.3 Radiation-induced pulmonary inflammation -----------------------------------------------------------------------81
4.6 CAPE and radiation pneumonitis
4.6.1 Histology of radiation pneumonitis -----------------------------------------------------------------------83
4.6.2 Inflammatory cytokines and radiation pneumonitis-----------------------------------------------------------------------83
4.6.3 CAPE reduced radiation pneumonitis -----------------------------------------------------------------------84
5. Conclusion-----------------------------------------------------------------------85
Future Prespectives-----------------------------------------------------------------------86
References -----------------------------------------------------------------------88
Figures
Chapter I-----------------------------------------------------------------------107
Chapter II-----------------------------------------------------------------------130
Appendix: List of publications during the period of receiving my PhD training year -----------------------------------------------------------------------143
1.Hall EJ. The physics and chemistry of radiation absorption. In Radiology for the Radiologist, 5th ed Philadelphia: J.B. Lippincott. 2000
2.Cohen GM. Caspases: the executioners of apoptosis. Biochemical J. 1997; 326:1-16.
3.Meng A, Wang Y, Brown SA, Van Zant G, Zhou D. Ionizing radiation and busulfan inhibit murine bone narrow cell hematopoietic function via apoptosis-dependent and –independent mechanisms. Exp Hematol. 2003; 31:1348-1356.
4.Viktorsson K, Petris LD, Lewensohn R. The role of p53 in the treatment responses of lung cancer. Biochem Biophys Res Comm 2005; 331: 868-880.
5.Abe J, Okuda M, Huang Q, Yoshizumi M, Berk BC. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem 2000; 275:1739-1748.
6.Savitsky PA, Finkel T. Redox regulation of Cdc25C. J Biol Chem 2002; 277:20535-20540
7.Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature 2000; 408:239-246.
8.Butterfield LH, Merino A, Golub SH, and Shau H. From cytoprotection to tumor suppression: The multifactorial role of Peroxiredoxins. Antioxidants & Redox Signaling. 1999;1: 385-401.
9..Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunology Today 1994; 15:7-10.
10.Schrader M, Fahimi HD. Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol. 2004; 122: 383-393.
11.Iwahara S, Satoh H, Song DX, Webb J, Burlingame AL, Nagae Y, Muller-Eberhard U. Purification, characterization, and cloning of a heme- binding protein in rat liver cytosol. Biochemistry. 1995; 34: 13398-13406.
12.Hofmann B, Hecht HJ, Flohe L. Peroxiredoxins Biol Chem 2002; 383:347-364.
13.Cotgreave IA, Gerdes RG. Glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophy Res Comm. 1998; 242: 1-9.
14.Coffey RN, Watson RW, Hegarty NJ, ONeil A, Gibbons N, Brady HR, Fitapatrick JM. Thiol-mediated apoptosis in prostate carcinoma cells. Cancer 2000; 88: 2092-2104.
15.Shau H, Kim AT, Hedrick CC, Lusis AJ, Tompkins C, Finney R, Leung DW, Paglia DE. Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stresses. Free Radical Biol. & Med. 1997; 22: 497-507.
16.Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoform can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-α. J. Biol. Chem. 1998;273: 6297-6302.
17.Li LF, Liao SK, Lee CH, Tsai YH, Huang CC, Quinn DA. Ventilation-induced neutrophil infiltration and apoptosis depend on apoptosis signal-regulated kinase 1 pathway. Crit Care Med 2005;33:1913-21.
18.Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T, Hakoshima T. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23kDa/ proliferation- associated gene product. Proc. Natl. Acad. Sci USA. 1999;96: 12333-12338.
19.Wood ZA, Schroder E, Harris R, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends in Biochem Sci 2003; 28:32-40.
20.Shau H, Butterfield LH, Chiu R, Kim A. Cloning and sequence analysis of candidate human natural killer enhancing factor genes. Immunogenetics 1994; 40:129-134.
21.Yim MB, Chae HZ, Rhee SG, Chock PB, Standman ER. On the protective mechanism of thilo specific antioxidant enzyme against the oxidative damage of biomacromolecules. J Biol Chem 1994; 269:1621-1622.
22.Kim H, Lee TH, Park ES, Suh JM, Park SJ, Chung HK, Kwon OY, Kim YK, Ro HK, Shong M. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen- induced apoptosis in thyroid cells. J Biol Chem 2000;275: 18266-18270.
23.Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, et al. Essential role for the peroxiredoxin prdx1 in erythrocyte antioxidant defence and tumor suppression. Nature 2003;424: 561-565.
24.Noh DY, Ahn SJ, Lee RA, Kim SW, Park LA, Chae HZ. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res 2001;21: 2085-2090.
25.Yanagawa T, Iwasa S, Ishii T, Tabuchi K, Yusa H, Onizawa K, Omura K, Harada H, Suzuki H, Yoshida H. Perosiredoxin I expression in oral cancer: a potential new tumor marker. Cancer Lett 2000; 156:27-35.
26.Chang JW, Jeon HB, Lee JH, Yoo JS, Chun JS, Kim JH, Yoo YJ. Augmented expression of perosiredoxin I in lung cancer. Biochem Biophys Res Comm. 2001;289: 507-512.
27.Berggren MI, Husbeck B, Samulitis B, Baker AF, Gallegos A, Powis G. Peroxiredoxin-1 is increased in thioredoxin-1 transfected cells and results in enhanced protection against apoptosis caused hydrogen peroxide but not by other agents including dexamethansome, etoposide and doxorubicin. Archives Biochem Biophys 2001; 392:103-109.
28.Chung YM, Yoo YD, Park JK, Kim YT, and Kim HJ. Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res 2001; 21: 1129-1134.
29.Pak JH, Manevich Y, Kim HS, Feinstein SI, and Fisher AB. An antisense oligonucleotide to 1-cys peroxiredoxin causes lipid peroxidation and apoptosis in lung epithelial cells. J Biol Chem 2002;277: 49927-49934.
30.Wang T, Tamae D, LeBon T, Shively JE, Yen Y, Li JJ. The role of peroxiredoxin II in Radiation- Resistant MCF-7 breast cancer cells. Cancer Res 2005; 65:10338-10346.
31.Wen ST, Van RA. The PAG gene product, a stress- induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes & Dev. 1997; 11, 2465-2467.
32.Goga A, Liu X, Hambuch TM, Senechal K, Major E, Berk AJ, Witte ON, Sawyers CL. P53 dependent growth suppression by the c-Abl nuclear tyrosine kinase. Oncogene.1995;11, 791-799.
33.Yuan ZM, Huang Y, Whang Y, Sawyer C, Weichselbaum R, Kharbanda S, Kufe D. Role of c-Abl tyrosine kinase in growth arrest to DNA damage. Nature. 1996; 382, 272-274.
34.Samuel T, Weber HO, Funk JO. Linking DNA damage to cell cycle checkpoint. Cell Cycle. 2002; 1:162-168.
35.Pawlik TM and Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004; 59:928-942.
36.Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432: 316-322.
37.Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3: 421-429.
38.Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998; 281:1677-1679.
39.Löbrich M, Jeggo PA. The two edges of the ATM sword: Co-operation between repair and checkpoint functions. Radiotherapy and Oncology 2005; 76: 112- 118.
40.Maya R, Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Gene Dev 2001; 15: 1067-1077.
41.Shiloh Y. ATM and ATR: Networking cellular responses to DNA damage. Curr Opin Genet Dev. 2001; 11:71-77.
42.Kao GD, Mckenna WG, Maity A, Blank A, Muschel RJ. Cyclin B1 availability is a rate- limiting component of the radiation- induced G2 delay in Hela cells. Cancer Res.1997; 57: 753-758.
43.Baumann P, West SC. DNA end-joining catalyzed by human cell-free extracts. Proc. Natl. Acad. Sci. USA 1998; 95: 14066-14070
44.Jeggo PA, DNA breakage and repair. Adv. Genet. 1998; 38: 186-218.
45.Lee SE, Mitchell RA, Cheng A, Hendrickson EA. Evidence for DNA-PK dependent and independent DNA double strand break repair pathways in mammalian cells as a function of the cell cycle. Mol Cell Biol 1997; 17:1425-1433.
46.Thompson LH and Schild D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat. Res. 2001; 477: 131-153.
47.Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S. The Rad 51A paralog Rad 51B promotes homologous recombinational reapir. Mol Cell Biol 2000; 20: 6476-6482.
48.Golding SE, Rosenberg E, Khalil A, McEwen A, Holmes M, Neil S, et al. Double strand break repair by homologous recombination is regulated by cell cycle- independent signaling via ATM in human glioma cells. J Biol Chem. 2004; 279: 15402-15410.
49.Xu W, Liu L, Smith GC, Charles G. Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nat Cell Biol. 2000; 2:339-345.
50.Dibiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ Jr, Iliakis G. DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res. 2000; 60: 1245-1253.
51.Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005; 438:967-974.
52.D’Amico TA. Angiogenesis in non-small cell lung cancer. Semin. Throac Cardio Surg 2004;16:13-18.
53.Ferrara N. VEGF and the quest for tumor angiogenesis factor. Nature Rev Cancer 2002;2:795-803.
54.Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptor. Nature Med 2003;9:669-676.
55.Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria-Petit A, Filmus J, Mansour SJ, Ahn NG, Kerbel RS. Oncogene and tumor angiogenesis: Differential modes of vascular endothelial frowth factor up- regulation in Ras- transformed epithelial cells and fibroblasts. Cancer Res. 2000; 60:490-498.
56.Rak J, Yu JL, Kerbel RS, Coomber BL. What do oncogenic mutations have to do with angiogenesis/ vascular dependence of tumors? Cancer Res 2002; 62:1931-1934.
57.Biroccio A, Candiloro A, Mottolese M, Sapora O, Albini A, Zupi G, Del Bufalo D. Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial frowth factor expression and in vivo angiogenesis in a breast carcinoma line. FASEB J 2000; 14:652-660.
58.Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM, Pollock RE. Wild type p53 suppress angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 2000; 60:3655-3661.
59.Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CD, Fang B, Lee JJ, Roth JA. Adenocirus-mediated wild type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res. 1998; 58:2288-2292.
60.Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995; 55: 3964-3968.
61.Fontanini G, Lucchi M, Vignati S, Mussi A, Ciardiello F, De Laurentiis M, De Placido S, Basolo F, Angeletti CA, Bevilacqua G. Angiogenesis as a prognostic factor of survival in non-small cell lung carcinoma: A prospective study. J Natl Cancer Inst 1997;89:881-886.
62.Carmeliet P. VEGF as a key mediator of angiogenesis in Cancer. Oncogene 2005; 69 (Suppl3) 4-10.
63.Maslyar DJ, Jahan TM, Jablon DM. Mechanisms and potential treatment strategies for metastatic disease in non- small cell lung cancer. Semin Throac Cardio Surg 2004;16:40-50.
64.Grunberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, Estevez V, Nakanishi K. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia (Basel) 1988; 44:230-232.
65.Chen YJ, Shiao MS, Wang SY. The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukeic HL-60 cells. Anti-Cancer Drugs 2001;12:143-149.
66.Chiao C, Carothers AM, Grunberger D, Solomon G, Preston GA, Barrett JC. Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res 1995; 55:3576-3583.
67.Sud'ina GF, Mirzoeva OK, Pushkareva MA, Korshunova GA, Sumbatyan NV, Varfolomeev SD. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 1993, 329: 21-24.
68.Nomura M, Kaji A, Ma W, Miyamoto K, Dong Z. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Mol Carcinogenesis. 2001; 31:83-89.
69.Bhimarni R, Troll W, Grunberger D, Frenkel K. Inhibition of oxidative stress in Hela cells by chemopreventive agents. Cancer Res 1993,53: 4528-4533.
70.Nagaoka T, Banskota AH, Tezuka Y, Harimaya Y, Koizumi K, Saiki I, Kadota S. Inhibitory effects of caffeic acid phenethyl ester analogues on experimental lung metastasis of murine colon 26-L5 carcinoma cells. Biol Pharm Bull 2003; 26(5) 638-641.
71.Calikoglu M, Tamer L, Sucu N, Coskun B, Ercan B, Gul A, Calikoglu I, Kanik A. The effects of caffeic acid phenethyl ester on tissue damage in lung after hindlimb ischemia-reperfusion. Pharmacol Res 2003; 48(4):397-403.
72.Ghosh S, Baltimore D. Activation in vitro of NFκB by phosphorylation of its inhibitor IB. Nature 1990;344:678-682.
73.Karin M. How NF-κB is activated: the role of the IB kinase (IKK) complex. Oncogene 1999;18:6867-6874.
74.Gilmore T, Koedood M, Piffat KA, White DW. Rel/NF-κB/IB protein and cancer. Oncogene 1996;13:1367-1378.
75.Phal HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999;18:6853-6866.
76.Natarajan K, Singh S, Burke TR, Grunberger D, Aggarwal BB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-B. Proc Natl Acad Sci USA 1996, 93: 9090-9095.
77.Fitzpatrick LR, Wang J, Le T. Caffeic acid phenethyl ester, an inhibitor of nuclear transcription factor NF-B, attenuates bacterial peptidoglycan polysaccharide- induced colitis in rats. J Pharmacol Exp Ther 2001, 299: 915-920.
78.Neurath MF, Becker C, Barbulescu K. NF-B in immune and inflammatory responses in the gut. Gut 1998, 43: 856-860.
79.Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NS, Caputi AP, Thiemermann C. Tempol reduced the activation of nuclear factor-B in acute inflammation. Free Radical Research 2004, 8: 813-819.
80.Linard C, Marquette C, Mathieu J, Pennequin A, Clarencon D, Denis M. Acute induction of inflammatory cytokine expression after - irradiation in the rat: effect of an NF-B inhibitor. Int J Radiat Oncol Biol Physics 2004, 58: 427-434.
81.Wang Y, Meng A, Lang H, Brown SA, Konopa JL, Kindy MS, Schmiedt RA, Thompson JS, Zhou D. Activation of nuclear factor B in vivo selectively protects the murine small intestine against ionizing radiation induced damage. Cancer Res 2004, 64: 6240-6246.
82.Riley PA. Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994;65:27-33.
83.Rubin P, Johnston CJ, Williams JP. A perpetual cascade of cytokines post irradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995;33: 99-109.
84.Fu XL, Huang H, Bentel G, Clough R, Jirtle RL, Kong FM, Marks LB, Anscher MS. Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys 2001;50:899-908.
85.Molls M, van Beuningen D. Radiation injury of the lung: Experimental studies, observations after radiotherapy and total body irradiation prior to bone marrow transplantation. In: Scherer E, Streffer C, Trott KR. Radiopathology of organs and tissues. Berlin: Springer- Verlag 1991, p369-404.
86.Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Physics 1995; 33: 99-109.
87.Hong JH, Chiang CS, Tsao CY, Lin PY, McBride WH, Wu CJ. Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. Int Radiat Biol 1999; 75: 1421-1427
88.Arpin D, Perol D, Blay JY, Falchero L, Claude L, Vuillermoz-Blas S, Martel-Lafay I, Ginestet C, Alberti L, Nosov D, Etienne-Mastroianni B, Cottin V, Perol M, Guerin JC, Cordier JF, Carrie C. Early variation of circulating interleukin-6 and interleukin- 10 level during thoracic radiotherapy are predictive radiation pneumonitis. J Clin Oncol 2005; 23: 8748-8756.
89.McBride WH. Cytokine cascades in late normal tissue radiation responses. Int J Radiat Oncol Biol Physics 1995; 33: 233-234.
90.Anscher MS, Vujaskovic Z. Mechanisms and Potential Targets for Prevention and Treatment of Normal Tissue Injury After Radiation Therapy. Seminar in Oncol 2005; 32 Suppl 3: S86-91
91.Seed T, Kumar S, Whitnall M, Srinivasan V, Singh V, Elliott T, Landauer M, Miller A, Chang CM, Inal C, Deen J, Gehlhaus M, Jackson W 3rd, Hilyard E, Pendergrass J, Toles R, Villa V, Miner V, Stewart M, Benjack J, Danilenko D, Farrell C. New strategies for the prevention of radiation injury: Possible implications for countering radiation hazards of long term space travel. J Radiat Res 2002; 43: Suppl., S239-244
92.Nair CKK, Parida D, Nomura T. Radioprotectors in Radiotherapy. J Radiat Res 2001; 42, 21-37
93.Struthers L. Patel R. Clark J. Thomas S. Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Analyt Biochem 1998; 255:20-31.
94.Yanagawa T, Iwasa S, Ishii T, Tabuchi K, Yusa H, Onizawa K, Omura K, Harada H, Suzuki H, Yoshida H. Perosiredoxin I expression in oral cancer: a potential new tumor marker. Cancer Lett 2000; 156:27-35.
95.Chang JW, Lee SH, Jeong JY, Chae HZ, Kim YC, Park ZY, Yoo YJ. Peroxiredoxin I is an autoimmunogenic tumor antigen in non-small cell lung cancer. FEBS Lett 2005;579: 2873-2877.
96.Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nature Med 2005; 11:1306-1313.
97.Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA. Influence of induced reactive oxygen species in p53- mediated cell fate decisions. Mol Cell Biol 2003; 23: 8576-8575.
98.Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53- induced apoptosis. Nature 1997; 389:300-305.
99.Huber RM, and Stratakis DF. Molecular Oncology- perspectives in lung cancer. Lung Cancer. 2004; S209-S213.
100.Fontanini G, Faviana P, Lucchi M. A high vascular count and overexpression of vascular endothelial growth factor are associated with unfavorable prognosis in operated small cell lung carcinoma. Br J Cancer 2002; 86:558-63.
101.Hildeman DA, Mitchell T, Aronom B, Wojciechowski S, Kappler J, Marrack P. Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci 2003; 100:15035-15040.
102.Mihara M, Erster S, Zaika A, Peternko O, Chittenden T, Pancoska P, Moll UM. P53 has a direct apoptogenic role at the mitochondrial. Mol Cell 2003; 11:577-590.
103.Tulard A, Hoffschir F, Boisferon FH, Luccioni C, Bravard A. Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity. Free Radical Biol Med.2003; 35: 68-77.
104.Chen SK, Tsai MH, Chen CH, Hwang JJ, Chan WP. Determination of 8- oxoquanine in individual cell nucleus of gamma-irradiated mammalian cells. Radiat Res. 2001;155: 832-836.
105.Patstink A, Eeken JC, Lohman PHM, Genomic integrity and the repair of the double strand DNA breaks. Mutat Res 2001; 480-481.
106.Hwang A, Muschel RJ. Radiation and the G2 phase of the cell cycle. Radiat Res 1998; 150, S52-S59.
107.Dilla T, Romero J, Sanstisteban P, Velasco JA. The mdm2 proto-oncogene sensitizes human medullary thyroid carcinoma cells to ionizing radiation. Oncogene 2002; 21: 2376-2386.
108.Nakamizo A, Inamura T, Inoha S, Amano T, Ochi H, Ikezaki K, Fukui M. Suppression of cdc2 dephosphorylation at tyrosine 15 residue during nitrosourea- induced G2M phase arrest in glioblastoma cell lines. J. neuro-oncology 2002; 59, 7-13.
109.Terzoudi GI, Jung T, Hain J, Vrouvas J, Margaritis K, Donta- Bakoyiannis C, Makropoulos V, Angelakis P, Pantelias GE. Increased G2 chromosomal radiosensitivity in cancer patients: the role of cdk1/ cyclin-B activity level in the mechanisms involved. Int J Radiat Biol 2000; 76, 607-615.
110.Wang Q, Fan S, Estaman A, Worland PJ, Sausville EA, O’Connor PM. A potent abrogator of G2 checkpoint function in cancer cells with disrupt p53. J Nat Cancer Inst 1996; 88, 956-965.
111.Eastman A. Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cellular Biochem 2004; 91, 223-231.
112.Chavaudra N, Bourhis J, Foray N. Quantified relationship between cellular radiosensitivity, DNA repair defects and chromatin relaxation: a study of 19 human tumour cell lines from different origin. Radiother Oncol 2004;73:373-82.
113.Troll W. Prevention of cancer by agents that suppress oxygen radical formation. Free Radic Res Commun 1991; 12-13 pt2: 751-752.
114.Frenkel K, Wei H, Bhimani R, Ye J, Zadunaisky JA, Huang MT, Ferraro T, Conney AH, Grunberger D. Inhibition of tumor mediated processes in mouse skin and bovin lens by caffeic acid phenethyl ester. Cancer Res 1993; 53: 1255-1261.
115.Bhimani RS, Troll W, Grunberger D, Frenkel K. Inhibition of oxidative stress in Hela cells by chemopreventive agents. Cancer Res 1993; 53, 4528-4533.
116.Fridovich I. The biology of oxygen radicals. Science. 1978; 201, 875-880.
117.Buttke RH. Superoxide and hydrogen peroxide in relationship to mammalian cell proliferation. Free Radical Biol Med 1995; 18, 775-794.
118.Thomas M, Buttke T, Sandstrom P. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15, 7-10.
119.Wang JF, Jerrells TR, Spitzer JJ.Decreased production of reactive oxygen intermediates is an early event during in vitro apoptosis of rat thymocyte. Free Rad Biol Med 1996; 20, 533-542.
120.Chen YJ, Liao HF, Tsai TH, Wang SY, Shiao MS. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse. Int J Radiat Oncol Biol Phys 2005; 63:1252-61.
121.Normu M, Kaji A, Ma W. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Mol Carcinog 2001; 31:83-89.
122.Lee YT, Don MJ, Hung PS, Shen YC, Lo YS, Chang KW, Chen CF, Ho LK. Cytotoxicity of phenolic acid phenethyl ester on oral cancer cell. Cancer Lett 2005; 223:19-25.
123.Kawasaki H, Toyoda M, Shinohara H, Okuda J, Watanabe I, Yamamoto T, Tanaka K, Tenjo T, Tanigawa N. Expression of survivin correlates with apoptosis, proliferation and angiogenesis during human colorectal tumorigenesis. Cancer 2001; 91, 2026-32.
124.Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T. Increase expression of cyclooxygenase 2 occurs frequently in human lung cancers, specially in adenocarcinomas. Cancer Res 1998; 58, 3761-3764.
125.Redpath JL, Gutierrez M. Kinetics of induction of reactive oxygen species during the post-irradiation expression of neoplastic transformation in vitro. Int J Radiat Biol 2001; 11, 1081-1085.
126.Newkirk K, Heffern J, Sloman-Moll E, Sessions RB, Rasmussen AA, Andrews PA, Cullen KJ. Glutathione conent but not gamma glutamyl cysteine synthetase mRNA expression predicts cisplatin resistance in head and neck cancer cell lines. Cancer Chemother Pharmac 1997; 40, 75-80.
127.Mirkovic N, Voehringer DW, Story MD, McConkey DJ, McDonnell TJ, Meyn RE. Resistance to radiation-induced apoptosis in bcl-2 expressing cells in reversed by depleting cellular thiols. Oncogene 1997;15, 1461-70.
128.Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radical Biol Med 2000; 28,1405-20.
129.Huang ZA, Yang H, Chen C, Zeng Z, Lu SC. Inducers of gamma-glutamylcysteine synthetase and their effects on glutathione synthetase expression. Biochim Biophys Acta 2000;1493, 48-55.
130.Chen WC, McBride WH, Chen SM, Lee KF, Hwang TZ, Jung SM, Shau H, Liao SK, Hong JH, Chen MF. Prediction of poor survival by cyclooxygenase-2 in patients with T4 nasopharyngeal cancer treated by radiation therapy: clinical and in vitro studies. Head Neck 2005; 27:503-512.
131.Raju U, Nakata E, Yang P, Newman RA, Ang KK, Milas L. In vitro enhancement of tumor cell radiosensitivity by a selective inhibitor of cyclooxygenase-2 enzyme: mechanistic considerations. Int. J. Radiat Oncol Biol Phys 2000; 54, 886-894.
132.Russo SM, Tepper JE, Baldwin AS, Liu R, Adams J, Elliott P, Cusack JC Jr. Enhancement of radiosensitivity by proteason inhibition: implication for a role of NF-B. Int J Radiat Oncol Biol Phys 2001, 50: 183-193.
133.de Ridder M, Verovski VN, Van den Berge DL, Sermeus AB, Monsaert C, Wauters N, Storme GA. Lipid A radiosensitizes hypoxic EMT-6 tumor cells: role of the NF-B signaling pathway. Int J Radiat Oncol Biol Phys 2003, 57: 779-786.
134.Haase MG, Klawitter A, Geyer P, Alheit H, Baumann M, Kriegel TM, Kasper M, Baretton GB. Sustained elevation of NF-B DNA binding activity in radiation- induced lung damage in rats. Int J Radiat Biol 2003; 79: 863-877.
135.Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA, Chung SJ, Paik SY, Oh HY. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol 2004;4:429-436.
136.Warshamana GS, Corti M, Brody AR. TNF-α, PDGF, and TGF-beta (1) expression by primary mouse bronchiolar alveolar epithelial and mesenchymal cells: TNF-α induces TGF-beta (1). Exp Mol Pathol 2001; 171: 13-33.
137.Franko AJ, Sharplin J. Development of fibrosis after lung irradiation in relation to inflammation and lung function in mouse strain prone to bibrosis. Radiat Res 1994;140: 347-355.
138.Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovirus- mediated gene transfer of active transforming factor - induces prolonged severe fibrosis in rat lung. J Clin Invest 1997; 100: 768-766.
139.Rube C, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, Willich N, Rube C. Dose-dependent induction of transforming growth factor  (TGF-) in the lung tissue of fibrosis- prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 2000; 47: 1033-1042.
140.Liu JY, Brody AR. Increased TGF-1 in the lungs of asbestos- exposed rats and mice: reduced expression in TNF- alpha receptor knockout mice. J Environ Pathol Toxicol Oncol 2001; 20: 97-108.
141.Lawrance IC, Wu F, Leite AZ, Willis J, West GA, Fiocchi C, Chakravarti S: A murine model of chronic inflammation- induced intestinal fibrosis down- regulated by abtisense NF-Kappa B. Gastroenterlogy 2003, 125: 1750-61.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top