跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘恩源
研究生(外文):PAN EN-YUAN
論文名稱:胸脊髓中間質外側細胞柱麩胺酸鹽受器於生理及實驗性敗血症狀態下對交感神經性血管運動張力之貢獻
論文名稱(外文):Contribution of Glutamate Receptors in Intermediolateral Cell Column of Thoracic Spinal Cord to Sympathetic Vasomotor Tone Under Physiological Conditions and During Experimental Endotoxemia
指導教授:陳慶鏗陳慶鏗引用關係莊錦豪
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:103
中文關鍵詞:延腦鼻端腹外側區中間質外側細胞柱胸脊髓蜘蛛網下腔神經性血管運動張力麩胺酸鹽受器敗血症
外文關鍵詞:Rostral ventrolateral medullaIntermediolateral cell columnThoracic subarachnoid spaceNeurogenic vasomotor toneGlutamate receptorEndotoxemia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:0
治療敗血症病人是一項具挑戰性工作,因為一方面要處理周邊血管阻力下降所引起的低血壓,另一方面要接受類交感神經升壓藥物很快會在病人身上產生耐受性的事實,因此頑固性低血壓仍然是造成敗血症高死亡率及傷殘率的主要原因。在生理狀態下,神經性血管運動張力是維持正常血壓的主要因素,所以在敗血症狀態下,對調節神經性血管運動張力機制的了解,更顯得重要,對突破治療敗血症的瓶頸將會有很大的幫助。一個完整的延腦鼻端腹外側區、腦幹脊髓路徑、及中間質外側細胞柱組合是維持基礎血管運動張力之首要條件。動脈血壓頻譜能反應延腦鼻端腹外側區的交感神經前運動神經元的活性,所產生的神經性血管運動張力訊號是透過活化位在胸、腰脊髓中間質外側細胞柱內的節前交感神經元。而兩大類的麩胺酸鹽受器 – NMDA 及non-NMDA受器在生理及敗血症狀態下,它們對產生神經性血管運動張力的相對貢獻為何,至今仍未十分清楚。我們合併生理、藥理實驗、及雙重免疫螢光染色方法去探討腦脊髓中間質外側細胞NMDA及non-NMDA受器於生理及敗血症狀態下對交感神經性血管運動張力之貢獻。

為能更精準將欲投予之藥物,直接投予到IML區域,實驗需要預先在大鼠胸脊髓蜘蛛網下腔埋置導管。因目前採用的置管方法常合併較高的手術後死亡率及傷殘率,在本研究中,我們發展一套更優良的胸脊髓蜘蛛網下腔導管置放技術。在PE-10導管一端往後2公分處黏上一粒矽膠小珠,導管內置放一條4/0的血管縫合線,縫合線的一端被摺成L-型鈎狀構造,利用L-型線端作為探針,探索到已被刺開的硬椎膜,然後導管順著縫合線滑入蜘蛛網下腔,直到矽膠小珠卡在T13脊椎椎弓板上被鑽開2 x 2公分大小的入口處。經由脊髓攝影及藥理實驗證明埋置的導管,可有效且成功的將藥物投予到胸脊髓蜘蛛網下腔。

Sprague-Dawley 雄鼠在propofol 維持麻醉狀況下,在T10-T12脊髓蜘蛛網下腔給予三個等莫爾 (equimolar) 濃度 (75,150,300 nmol) 的NMDA拮抗劑 (dizocilpine, MK801),或non-NMDA拮抗劑 (6-cyano-7-nitroquinoxaline-2,3-dione, CNQX)。實驗結果顯示在生理狀態下,這兩種拮抗劑在同一莫爾濃度下,在相同時間點上所造成神經性血管運動張力抑制的效果是相同的。預先在胸脊髓蜘蛛網下腔給予其中一種拮抗劑,再以靜脈注射Escherichia coli 內毒素 (30 mg/kg),所引起的低血壓、心跳過慢及血管運動張力下降等效應都比單純內毒素引起的效應來得强勁,並加速動物的死亡。我們的結果更顯示150 nmol的CNQX在敗血症時所產生的效應與300 nmol的MK801所產生的效應是相同的。利用雷射掃描共軛焦顯微鏡觀察節前交感神經元,發現NMDA受器的NR1次單元其免疫反應被強化的時段,剛好與敗血症進入交感神經興奮期吻合;但non-NMDA受器的GluR1次單元之免疫反應,在整個敗血症過程中都沒有改變。

具有節前交感神經元的定位及辨認能力,對實驗結果的正確詮釋是攸關重要,在進行節前交感神經元上麩胺酸鹽受器表現觀察前,應對節前交感神經元在中間質外側細胞柱內的位置、分佈、及細胞形態作充份了解。我們利用低電流刺激延腦鼻端腹外側區,誘發節前交感神經元表現c-fos蛋白質,再利用免疫組織學觀察帶有c-fos蛋白質免疫反應產物的細胞,並觀察其形態及分佈。c-fos蛋白質陽性細胞祇在中間質外側細胞柱區域發現。

綜合相關結果,本論文研究推論胸脊髓節前交感神經元上的NMDA及non-NMDA受器在生理狀態下,對神經性血管運動張力產生的貢獻是相等的。在敗血症狀態下,胸脊髓節前交感神經元上的NMDA受器在維持神經性血管運動張力上,扮演決定性的角色。
The management of septic patients posts a professional challenge because of the reduction in systemic vascular resistance and the progressively diminished response to sympathomimetic pressor agents. The refractory hypotension remains a significant cause of morbidity and mortality in septic patients. Under physiological conditions, neurogenic vasomotor tone plays an important role in the maintenance of normal blood pressure. A better understanding of the regulatory machinery on neurogenic vasomotor tone during sepsis is therefore of vital importance. The integrity of rostral ventrolateral medulla (RVLM), bulbospinal tract, and intermediolateral cell column (IML) plays an important role in maintaining resting vasomotor tone. The vasomotor components of the systemic arterial pressure (SAP) spectrum reflect the activities of the sympathetic premotor neurons in RVLM, and the vasomotor signals are transmitted through activation of glutamate receptors on sympathetic preganglionic neurons (SPN) in IML. However, the relative contribution of the two major subtypes of glutamate receptors, NMDA and non-NMDA receptors, to the generation of neurogenic vasomotor tone under physiological conditions or during experimental endotoxemia is basically unknown. We addressed this issue by using a combination of physiological, pharmacological and double immunofluorescence approaches to delineate the relative contribution of NMDA and non-NMDA receptors on SPN to the generation of neurogenic vasomotor tone under physiological conditions and during experimental endotoxemia.

For more accurate distribution of drugs over the specific IML region, a pre-implanted catheter in the thoracic subarachnoid space is mandatory. The currently available methods for catheterization of the thoracic spinal subarachnoid space in rats have been associated with relatively high postoperative mortality and morbidity. In our study, we developed a better method of catheterization. An intrathecal catheter was fabricated with a small silicon bead at one end of a PE-10 catheter, which was cannulated with a 4/0 suture that served as a guide. Using the L-shape hook of the suture guide as an anchorage, the catheter was advanced into the subarachnoid space until the silicon bead was lodged on a drilled hole (2 x 2 mm) over the lamina proper on the T13 vertebrae. The applicability of the implanted catheter was demonstrated by myelogram and pharmacological studies.

Adult male Sprague-Dawley rats maintained under propofol anesthesia were used. Intrathecal administration of equimolar concentrations (75, 150 or 300 nmol) of a NMDA antagonist, dizocilpine (MK801) or a non-NMDA antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) into T10-T12 spinal cord elicited a reduction in resting vasomotor tone that was comparable in time-course and in magnitude. At the same time, both glutamate receptor antagonists exacerbated mortality and potentiated the elicited hypotension, bradycardia or reduction in vasomotor tone during experimental endotoxemia induced by intravenous administration of Escherichia coli lipopolysaccharide (30 mg/kg). Results comparable to CNQX at 150 nmol were obtained only when MK801 was given at 300 nmol. Confocal microscopy further showed that augmented immunoreactivity of NR1 subunit of the NMDA receptor on IML neurons coincided with the phase of endotoxemia when vasomotor tone was augmented; the immunoreactivity GluR1 subunit of the non-NMDA receptor remained stable throughout experimental endotoxemia.

Correct localization and identification of SPN was crucial to the interpretation of our results. We thus have to be familiar with the location, morphology, and distribution of SPN in IML for accurate location of glutamate receptor expression on SPN. c-fos protein was induced in SPN through electrical stimulation to RVLM and visualized by immunohistochemical method. It was found that c-fos positive cells were not present in the spinal cord except within the IML region.

We concluded that NMDA and non-NMDA receptors on IML neurons contribute equally to the generation of resting sympathetic vasomotor tone. However, upregulation of NMDA receptors on IML neurons plays a crucial role in the maintenance of vasomotor tone during endotoxemia.
目 錄
指導教授推薦書…………………………………………………………………
口試委員會審定書………………………………………………………………
授權書………………………………………………………………………………...iii
簽署人須知…………………………………………………………………………...iv
誌謝……………………………………………………………………………………v
中文摘要……………………………………………………………………………..vii
英文摘要………………………………………………………………………………x
目錄………………………………………………………………. ………………...xiii
第一章 緒論…………………………………………………………………………1
1-1 敗血症 (Sepsis)………………………………………………..……………..1
1-1-1 敗血症的定義……………………………………………………............1
1-1-2 敗血症的病原學及病理生理學………………………………………...2
1-1-3 敗血症的治療瓶頸……………………………………………………....4
1-2 神經性血管運動張力 (Neurogenic vasomotor tone)………………………..5
1-2-1 延腦鼻端腹外側區………………………………………………………5
1-2-2 神經性血管運動張力與脊髓的關係……………………………………7
1-2-3 中間質外側細胞柱 (IML)………………………………………………7
1-2-4 節前交感神經元 (SPN)…………………………………………………8
1-2-5 RVLM與SPN之聯繫…………………………………………………..8
1-2-6 與SPN相關的其他神經傳導物質……………………………………...9
1-2-7 神經性血管運動張力與glutamate………………………………..........11
1-2-8 外圍神經對SPN的影響………………………………………….........12
1-2-9 SPN的定位……………………………………………………………13

1-3 動脈血壓頻譜分析法
(Power spectral analysis of systemic arterial pressure signal)……..............14
1-3-1 動脈血壓頻譜分析法之特點及起源……..……………………............14
1-3-2 動脈血壓頻譜分析法之原理…..…………………………………........14
1-3-3 動脈血壓頻譜的組成及其意義…..………………………………........16
1-4 VLF和LF之重要性義………………..……………………………………..17
1-4-1 VLF和LF與RVLM的關係…………………..………………………...17
1-4-2 VLF和LF的功率密度在重症病患的意義……..……………………...19
1-5 實驗性敗血症在動脈血壓頻譜分析下的特性……..……………………...19
1-6 脊髓蜘蛛網下腔給藥的重要性………………..…………………………...20
第二章 研究動機與目的………………………………………................................22
2-1 研究動機 (Rationale)…………………………………..…………………...22
2-2 研究目的…………………………………………………..………………...24
第三章 材料與方法…………………………………………………………............25
3-1 置放胸脊髓蜘蛛網下腔導管………………………..……………………...25
3-1-1 動物選擇…………………………………..……………………………25
3-1-2 導管設計…………………………………..……………………………25
3-1-3 導管置入手術…………………………..………………………………25
3-1-4 成功導管置入手術之標準…………………..…………………………27
3-1-5 比較現有置放胸脊髓蜘蛛網下腔導管的方法…..……………………27
3-1-6 脊髓X先攝影圖標………………………………..……………………28
3-2 測試從導管注入NMDA受器拮抗劑或non-NMDA受器拮抗劑
到胸脊髓蜘蛛網下腔後對動脈血壓頻譜VLF功率密度的影響…............28
3-2-1 實驗前準備……………………………………………………...……...28
3-2-2 動脈血壓頻譜分析…………………………………………...………...29
3-2-3 non-NMDA及NMDA拮抗劑對VLF的影響…..……………............29
3-2-4 統計分析………...……………………………………………………...30
3-3 節前交感神經元的定位…..…………………………………………...........30
3-3-1 動物及實驗前的準備…………...……………………………………...30
3-3-2 對RVLM作電刺激…………..………………………………………...31
3-3-3 灌流固定……………………...………………………………………...31
3-3-4 Fos-like蛋白質之免疫細胞化學染色法…..…………………………32
3-4 胸脊髓中間質外細胞柱NMDA及non-NMDA受器對交感
神經性血管運動張力之貢獻……………………………………………..33
3-4-1 實驗前的準備手術………………………………...…………………...33
3-4-2 生理狀態……………………………………………...………………………34
3-4-3 在實驗性敗血症狀態下……………………….…...…………………..34
3-5 雙重免疫螢光染色……………………………………..…………………...35
3-6 統計分析………………………………………………..…………………...36
第四章 結果…………………………………………………….……………… …..38
4-1 置放胸脊髓蜘蛛網下腔導管……………………………………..…...........38
4-1-1比較手術後產生的合併症……………………………………..….........38
4-1-2脊髓X光圖像.................………………………………..………............39
4-1-3應用胸脊髓蜘蛛網下腔導管於脊髓功能性實驗上之可行性……..….39
4-2 節前交感神經元的定位…………………………………………..………...40
4-2-1電刺激的血壓反應…………………………………………..………….40
4-2-2利用c-fos蛋白質表現特性對SPN作定位……………….……………41
4-3 胸脊髓SPN上的NMDA及non-NMDA受器對交感神經性
血管運動張力之貢獻……………………………………………………..42
4-3-1生理狀態下胸脊髓SPN上的NMDA及non-NMDA受器
對交感神經性血管運動張力之貢獻…………………………………..42
4-3-2 胸脊髓SPN上的NMDA及non-NMDA受器對實驗性敗
血症引起的死亡率之差別角色………………………………………43
4-3-3 敗血症狀態下胸脊髓SPN上的NMDA及non-NMDA受
器對神經性血管運動張力之貢獻……………………………………44
4-4 胸脊髓SPN上的NMDA及non-NMDA受器在基礎狀態下
及實驗性敗血症下的差別表現…………………………………………..45
第五章 討論……………………………………………………………..…………..47
5-1 胸脊髓蜘蛛網下腔置放導管之技術………………………………..……...47
5-2 節前交感神經元的定位………………………………………..…………...51
5-3 胸脊髓SPN上的NMDA及non-NMDA受器在不同環境下
對神經性血管運動張力的角色……………………………………..........52
第六章 結論與展望 …………………………………..………………………..60













圖表……………………………………………………………………………….… 63
表一、比較三種不同胸脊髓蜘蛛網下腔置放導管技術的後遺症…………………63
圖一、改良型蜘蛛網下腔導管構造。矽膠珠黏在導管端後兩公分處,
導管兩端各伸出一公分長的縫合線,在矽膠珠端的縫合線被摺
成一個L-型結構..............................................................................................64
圖二、置放胸脊髓蜘蛛網下腔導管之實品圖。 a. 分離脊椎旁肌肉後
鑽孔後的T13椎弓板 (箭頭)。b. 導管經縫合線引渡進入蜘蛛
網下腔 (箭頭)……………………………………………………………......65
圖三、置放胸脊髓蜘蛛網下腔導管過程之示意圖。 a. 胸脊椎的背面
圖,顯示導管進入蜘蛛網下腔的入口。 b至f. T13椎弓板鑽孔
的縱切面圖,顯示出各重要步驟,包括導引導管進入蜘蛛網下
腔、導管留置、及導管固定…………………………………………………..66
圖四、大白鼠頭部背面圖,顯示RVLM的座標位置,頂骨與枕骨交
會點 (lambda),往後退3.2 – 3.8 mm,左右離中線1.6 – 1.8 mm,
即A及A’兩點,垂直往下約8 mm可達RVLM …………………………….67
圖五、脊髓X-光圖像顯示顯影劑在蜘蛛網下腔之分佈。 a. 未注入
顯影劑。 b至e. 連續四次注入顯影劑,每次相隔5分鐘,
分別注入10, 20, 20,及 20 L顯影劑。直線標示乃顯影
劑的分佈範圍,箭頭表示在蜘蛛網下腔的導管末端………………………68
圖六、蜘蛛網下腔給予aCSF、CNQX (上圖)、或MK801(下圖)對動脈
血壓頻譜的VLF功率密度之影響,數值為給試劑後三十分鐘內
VLF功率密度之總和,以平均數 ± SEM表示,每一組包含五隻
動物。利用Student-Newman-Keuls 多區間檢定各組的差異;
*P < 0.05表示用藥組與相對應控制組比較達到統計差異……………...69
圖七、電刺激RVLM引起血壓及心跳的改變,箭頭所指為電刺激
開始,刺激持續三分鐘,休息七分鐘,電流強度為50 A………………70
圖八、低倍數顯微鏡下胸脊髓橫切面代表圖,顯示RVLM經過電
刺激後,只有在特定區域的細胞才有c-fos蛋白質的表現。
節頭所指黑色小點為c-fos蛋白質免疫反應產物。尺規長度
為30 m……………………………………………………………………...71
圖九、中、高倍數顯微鏡下胸脊髓橫切面代表圖,顯示RVLM經過
電刺激後,IML內一些細胞有c-fos蛋白質的表現。 節頭所指黑
點為c-fos蛋白質免疫反應產物且局限在細胞核內。尺規長度分
別為30 m及10 m…………………………………………………………72
圖十、低倍數顯微鏡下的胸脊髓縱切面代表圖,顯示RVLM經過電刺
激後,在IML細胞產生c-fos蛋白質,箭頭所指均為帶有c-fos
蛋白質的免疫反應產物。尺規長度為30 m……………………………….73
圖十一、在T10-T12脊髓蜘蛛網下腔投與aCSF、MK801、或CNQX
後所產生的血壓、心跳、LF或VLF功率密度變化與時間
的關係。箭頭為投藥時間。實驗數值以平均數 ± SEM表
示,每組包含了五到六隻動物。利用Scheffé 多區間檢定
比較各組在相同時間點的差異,*P < 0.05表示aCSF組達
到統計差異; +P < 0.05表示MK801組(75 nmol) 或CNQX
組(75 nmol) 達到統計差異........................................................................74
圖十二、在脊髓蜘蛛網下腔分別投與aCSF、MK801、或CNQX,
再從靜脈給予生理食鹽水或LPS (30 mg/kg) 後對動物存活率
的影響。在實驗開始時,每組包含了5到6隻動物…………………… 75
圖十三、經靜脈注射LPS (30 mg/kg) 所產生的血行動力學及動脈血壓
頻譜改變的代表圖。Phases I, II, III的劃分是以VLF及LF
功率密度之改變作為依據………………………………………………..76
圖十四、在胸脊髓蜘蛛網下腔投與aCSF, MK801 或 CNQX (a箭頭),
再從靜脈給予生理食鹽水或LPS (30 mg/kg) (b箭頭) 後所產生
的血壓、心跳、LF或VLF功率密度變化與時間的關係。實驗
數值以平均數 ± SEM差表示,每組包含了五到六隻動物。利用
Scheffé 多區間檢定各組在相同時間點的差異;*P < 0.05表示
aCSF+生理食鹽水組達到統計差異; +P < 0.05表示aCSF+LPS
組達到統計差異…………………………………………………………..77
圖十五、在動物胸脊髓蜘蛛網下腔給予CNQX (150 nmol),再從靜脈給
予LPS (30 mg/kg) 後所產生的血壓、心跳、LF及VLF功率密
度變化與時間關係的代表圖......................................................................78
圖十六、在動物胸脊髓蜘蛛網下腔給予MK801 (150 nmol),再從靜脈給
予LPS (30 mg/kg) 後所產生的血壓、心跳、LF及VLF功率密
度變化與時間關係的代表…......................................................................79
圖十七、雷射掃描共軛焦顯微鏡下脊髓T10-T12之IML的代表圖,
顯示細胞對神經細胞特定核蛋白NeuN (紅色螢光) 呈免疫
反應,並且對NR1單元 (綠色螢光) 呈免疫反應。 a、b是
取自在麻醉下沒有LPS處理的動物。 注意當紅色螢光和綠色
螢光重疊後會產生黃色螢光。尺規長度為20 m……………………….80
圖十八、雷射掃描共軛焦顯微鏡下脊髓T10-T12右側IML的代表圖,
顯示細胞對神經細胞特定核蛋白NeuN (紅色螢光) 呈免疫反
應,並且對NR1單元 (綠色螢光) 呈免疫反應。A、B是取
自在麻醉下沒有LPS處理的動物。C、D是取自處在敗血症
第一期的動物,E、F是取自處在敗血症第二期的動物。
G、H是取自敗血症第三期的動物。 注意當紅色螢光和綠色
螢光重疊後會產生黃色螢光。尺規長度為20 m……………………….81
圖十九、雷射掃描共軛焦顯微鏡下脊髓T10-T12右側IML的代表圖,
顯示細胞對神經細胞特定核蛋白NeuN (紅色螢光) 呈免疫反
應,並且對GluR1單元 (綠色螢光) 呈免疫反應。A、B是
取自在麻醉下,且沒有LPS處理的動物;C、D是取自處在
敗血症第一期的動物,E、F是取自處在敗血症第二期的動
物;G、H是取自處敗血症第三期的動物。注意當紅色螢光
和綠色螢光重疊後會產生黃色螢光。尺規長度為20 m……………….82
參考文獻……………………………………………………………………………..83
附錄…………………………………………………………………………………102
參 考 文 獻


Aicher SA, Hahn B, Milner TA. N-methyl-D-aspartate-type glutamate receptors are found in post-synaptic targets of adrenergic terminals in the thoracic spinal cord. Brain Res 2000;856:1-11.

.Akerman SB. A methodological study of spinal (subarachnoid) anaesthesia in the rat and the mouse. Br J Anaesth 1985;57:329-32.

Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC,Cohen RJ. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 1985;249:H867-75.

Akselrod S, Eliash S, Oz O, Cohen S. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol 1987;253:H176-83.

Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci 1988;9:6-9.

Allen GV, Cechetto DF. Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area. II. Ascending projections. J Comp Neurol 1993;330:421-38.

Andrade R, Aghajanian GK. Single cell activity in the noradrenergic A-5 region: responses to drugs and peripheral manipulations of blood pressure. Brain Res 1982;242:125-35.




Argiriadou H, Himmelseher S, Papagiannopoulou P, Georgiou M, Kanakoudis F, Giala M, Kochs E, Improvement of pain treatment after major abdominal surgery by intravenous S+-ketamine. Anesth Analg 2004;98:1413-18.

.Armstrong WE, Warach S, Hatton GI, McNeill TH. Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase an immunocytochemical analysis. Neuroscience 1980;5:1931-58.

Atkinson PP, Atkinson JL. Spinal shock. Mayo Clin Proc 1996;71:384-9.

Backman SB, Henry JL. Effect of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the upper thoracic intermediolateral nucleus of the cat. Can J Physiol Pharmacol 1984;62:248-51.

Bahar M, Rosen M, Vickers MD. Chronic cannulation of the intradural or extradural space in the rat. Br J Anaesth 1984;56:405-10.

Bakker J, Grover R, McLuckie A, Holzapfel L, Andersson J, Lodato R, Watson D, Grossman S, Donaldson J, Takala J, Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med 2004;32:1-12.

Bartel B, Blumberg H, Janig W. Discharge patterns of motility-regulating neurons projecting in the lumbar splanchnic nerves to visceral stimuli in spinal cats. J Auton Nerv Syst 1986;15:153-63.


Bazil MK, Gordon FJ. Effect of blockade of spinal NMDA receptors on sympathoexcitation and cardiovascular responses produced by cerebral ischemia. Brain Res 1991;555:149-52.

Beacham WS, Perl ER. Background and Reflex Discharge of Sympathetic Preganglionic Neurones in the Spinal Cat. J Physiol 1964;172:400-16.

Bernat JL, Culver CM, Gert B. On the definition and criterion of death. Arch Intern Med 1981;94:389-94.


Bilello JF, Davis JW, Cunningham MA, Groom TF, Lemaster D,Sue LP. Cervical spinal cord injury and the need for cardiovascular
intervention. Arch Surg 2003;138:1127-9.

Bone RC. Let's agree on terminology: definitions of sepsis. Crit Care Med 1991a;19:973-6.

Bone RC. Sepsis, the sepsis syndrome, multi-organ failure: a plea for comparable definitions. Ann Intern Med 1991b;114:332-3.

Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991c;115:457-69.

Bone RC. Sepsis syndrome. New insights into its pathogenesis and treatment. Infect Dis Clin North Am 1991d;5:793-805.

Bone RC. Gram-negative sepsis. Background, clinical features, and intervention. Chest 1991e;100:802-8.

Bone RC. Multiple system organ failure and the sepsis syndrome. Hosp Pract (Off Ed) 1991f;26:101-9;discussion 9-26.

Bone RC. Gram-positive organisms and sepsis. Arch Intern Med 1994;154:26-34.

Bousquet P, Feldman J, Bloch R, Schwartz J. Medullary cardiovascular effects of tetrodotoxin in anaesthetized cats. Eur J Pharmacol 1980;65:293-6.

Bowker RM, Westlund KN, Sullivan MC, Wilber JF, Coulter JD. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Brain Res 1983;288:33-48.

Bravo G, Guizar-Sahagun G, Ibarra A, Centurion D, Villalon CM. Cardiovascular alterations after spinal cord injury: an overview. Curr Med Chem Cardiovasc Hematol Agents 2004;2:133-48.

Buijs RM, Swaab DF, Dogterom J, van Leeuwen FW. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 1978;186:423-33.

Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 1990;296:517-30.

Elmquist JK, Ackermann MR, Register KB, Rimler RB, Ross LR, Jacobson CD. Induction of Fos-like immunoreactivity in the rat brain following Pasteurella multocida endotoxin administration. Endocrinology 1993;133:3054-57.

Byrum CE, Stornetta R, Guyenet PG. Electrophysiological properties of spinally projecting A5 noradrenergic neurons. Brain Res 1984;303:15-29.

Evans T, Carpenter A, Kinderman H, Cohen J. Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 1993;41:77-81.

Feldman DS, Buccafusco JJ. Spinal muscarinic, glutamatergic and GABAergic receptor systems in cardiovascular regulation. J Pharmacol Exp Ther 1997;281:274-83.

Fend F, Raffeld M. Laser capture microdissection in pathology. J Clin Pathol 2000;53:666-72.

Fleetwood-Walker SM, Coote JH, Gilbey MP. Identification of spinally projecting neurones in the A1 catecholamine cell group of the ventrolateral medulla. Brain Res 1983;273:25-33.

Forehand CJ. Morphology of sympathetic preganglionic neurons in the neonatal rat spinal cord: an intracellular horseradish peroxidase study. J Comp Neurol 1990;298:334-42.

Foreman RD, Wurster RD. Conduction in descending spinal pathways initiated by somatosympathetic reflexes. Am J Physiol 1975;228:905-8.

Furchgott RF, Jothianandan D. Endothelium-dependent and independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991;28:52-61.

Geinisman Y, Morrell F, de Toledo-Morrell L. Perforated synapses on double-headed dendritic spines: a possible structural substrate of synaptic plasticity. Brain Res 1989;480:326-9.

Gilbey MP, McKenna KE, Schramm LP. Effects of substance P on sympathetic preganglionic neurones. Neurosci Lett 1983;41:157-9.

Gondim FA, Lopes AC, Jr., Oliveira GR, Rodrigues C L, Leal PRSantos AA, Rola FH. Cardiovascular control after spinal cord injury. Curr Vasc Pharmacol 2004;2:71-9.

Graham LT, Jr., Shank RP, Werman R, Aprison MH. Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, gamma-aminobutyric acid, glycine and glutamine. J Neurochem 1967;14:465-72.

Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ. Brain stem area with C1 epinephrine neurons mediates baroreflex vasodepressor responses. Am J Physiol 1985;248:H547-67.

Guertzenstein PG, Silver A. Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol 1974;242:489-503.

Guyenet PG. The coeruleospinal noradrenergic neurons: anatomical and electrophysiological studies in the rat. Brain Res 1980;189:121-33.

Guyton AC, Harris JW. Pressoreceptor-autonomic oscillation; a probable cause of vasomotor waves. Am J Physiol 1951;165:158-66.

Hare BD, Neumayr RJ, Franz DN. Opposite effects of L-dopa and 5-HTP on spinal sympathetic reflexes. Nature 1972;239:336-7.

Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull 1998;45:1-8.

Helke CJ, Neil JJ, Massari VJ, Loewy AD. Substance P neurons project from the ventral medulla to the intermediolateral cell column and ventral horn in the rat. Brain Res 1982;243:147-52.

Helke CJ, Sayson SC, Keeler JR, Charlton CG. Thyrotropin-releasing hormone-immunoreactive neurons project from the ventral medulla to the intermediolateral cell column: partial coexistence with serotonin. Brain Res 1986;381:1-7.

Ho CM, Su CK. Ketamine attenuates sympathetic activity through mechanisms not mediated by N-methyl-D-aspartate receptors in the isolated spinal cord of neonatal rats. Anesth Analg 2006:102:806-10.


Hokfelt T, Ljungdahl A, Steinbusch H, Verhofstad A, Nilsson G, Brodin E, Pernow B, Goldstein M. Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine containing neurons in the rat central nervous system. Neuroscience 1978;3:517-38.

Holets V, Elde R. The differential distribution and relationship of serotoninergic and peptidergic fibers to sympathoadrenal neurons in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunofluorescence study. Neuroscience 1982;7:1155-74.

Hong Y, Henry JL. Intrathecal administration of non-NMDA receptor agonists increases arterial pressure and heart rate in the rat. Brain Res 1992a;591:62-8.

Hong YG, Henry JL. Glutamate, NMDA and NMDA receptor antagonists: cardiovascular effects of intrathecal administration in the rat. Brain Res 1992b;569:38-45.

Honore T, Davies SN, Drejer J, Fletcher EJ,
Jacobsen P, Lodge D, Nielsen FE. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 1988;241:701-3.

Huangfu D, Hwang LJ, Riley TA, Guyenet PG. Role of serotonin and catecholamines in sympathetic responses evoked by stimulation of rostral medulla. Am J Physiol 1994;266:R338-52.

Hussein Z, Beerahee M, Grover R, Jordan B, Jeffs R, Donaldson J, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL. Pharmacokinetics of the nitric oxide synthase inhibitor L-NG-methylarginine hydrochloride in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group.
Clin Pharmacol Ther 1999;65:1-9.


Inoue K, Miyake S, Kumashiro M, Ogata H, Ueta T, Akatsu T. Power spectral analysis of blood pressure variability in traumatic quadriplegic humans. Am J Physiol 1991;260:H842-7.

Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst 1990;30:91-100.

Jennett B, Plum F. Persistent vegetative state after brain damage. A syndrome in search of a name. Lancet 1972;1:734-7.

Johansson B, Jonsson O, Ljung B. Tonic supraspinal mechanisms influencing the intestino-intestinal inhibitory reflex. Acta Physiol Scand 1968;72:200-4.

Johansson O, Hokfelt T, Pernow B, Jeffcoate SL, White N,
Steinbusch HW, Verhofstad AA, Emson PC, Spindel E.
Immunohistochemical support for three putative transmitters in one
neuron: coexistence of 5-hydroxytryptamine, substance P- and
thyrotropin releasing hormone like immunoreactivity in medullary
neurons projecting to the spinal cord. Neuroscience
1981;6:1857-81.

Julien C, Zhang ZQ, Cerutti C, Barres C. Hemodynamic analysis of arterial pressure oscillations in conscious rats. J Auton Nerv Syst 1995;50:239-52.

Khan IM, Marsala M, Printz MP, Taylor P, Yaksh TL. Intrathecal nicotinic agonist-elicited release of excitatory amino acids as measured by in vivo spinal microdialysis in rats. J Pharmacol Exp Ther 1996;278:97-106.

Kieft H, Hoepelman AI, Zhou W, Rozenberg-Arska M, Struyvenberg A, Verhoef J. The sepsis syndrome in a Dutch university hospital. Clinical observations. Arch Intern Med 1993;153:2241-7.

Kilbourn RG, Griffith OW. Overproduction of nitric oxide in cytokine-mediated and septic shock. J Natl Cancer Inst 1992;84:827-31.

Korkmaz HA, Maltepe F, Erbayraktar S, Yilmaz O, Guray M, Canda MS, Gunerli A, Gokmen N.
Antinociceptive and neurotoxicologic screening of chronic intrathecal administration ketorolac
tromethamine in the rat. Anesth Analg
2004;98:148-52,

Koshiya N, Huangfu D, Guyenet PG. Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Res 1993;609:174-84.

Kristensen JD, Post C, Gordh T, Jr., Svensson BA. Spinal cord morphology and antinociception after chronic intrathecal administration of excitatory amino acid antagonists in the rat. Pain 1993;54:309-16.

Kuo TBJ, Chan SHH. Continuous, on-line, real-time spectral analysis of systemic arterial pressure signals. Am J Physiol 1993;264:H2208-13.

Kuo TBJ, Yang CC, Chan SHH. Transfer function analysis of ventilatory influence on systemic arterial pressure in the rat. Am J Physiol 1996;271:H2108-15.

Kuo TBJ, Yien HW, Hseu SS, Yang CC,. Lin YY, Lee LC, Chan SHH. Diminished vasomotor component of systemic arterial pressure signals and baroreflex in brain death. Am J Physiol 1997a;273:H1291-8.

Kuo TBJ, Yang CC, Chan SHH. Selective activation of vasomotor component of SAP spectrum by nucleus reticularis ventrolateralis in rats. Am J Physiol 1997b;272:H485-92.


Lane JD, Smith JE, Hall PV, Campbell RL. Distribution of taurine and putative amino acid neurotransmitters in eight areas of the canine lumbar spinal cord. Brain Res 1978;152:386-90.

Lechan RM, Molitch ME, Jackson IM. Distribution of immunoreactive human growth hormone-like material and thyrotropin-releasing hormone in the rat central nervous system: evidence for their coexistence in the same neurons. Endocrinology 1983;112:877-84.

Len WB, Tsou MY, Chan SHH, Chan JYH. Substance P suppresses the activity of alpha 2-adrenoceptors of the nucleus reticularis gigantocellularis involved in cardiovascular regulation in the rat. Brain Res 1994;638:227-34.

Li FCH, Chan JYH, Chan SHH, Chang AYW. In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade. Mol Pharmacol 2005;68:179-92.

Limas CJ, Limas C. Involvement of microtubules in the isoproterenol-induced 'down'-regulation of myocardial beta-adrenergic receptors. Biochim Biophys Acta 1983;735:181-4.

Lin HC, Wan FJ, Kang BH, Wu CC, Tseng CJ. Systemic administration of lipopolysaccharide induces release of nitric oxide and glutamate and c-fos expression in the nucleus tractus solitarii of rats. Hypertension 1999;33:1218-24.

Ljungdahl A, Hokfelt T, Nilsson G, Goldstein M. Distribution of substance P-like immunoreactivity in the central nervous system of the rat--II. Light microscopic localization in relation to catecholamine-containing neurons. Neuroscience 1978;3:945-76.


Luiten PG, ter Horst GJ, Karst H, Steffens AB. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 1985;329:374-8.

Macdonald RL, Cohen DH. Cells of origin of sympathetic pre- and postganglionic cardioacceleratory fibers in the pigeon. J Comp Neurol 1970;140:343-58.

Martin H, Kocher L, Chery-Croze S. Chronic lumbar intrathecal catheterization in the rat with reduced-length spinal compression. Physiol Behav 1984;33:159-61.

McNair CJ, Baxter GJ, Kerr R, Maxwell DJ. Glutamate receptor subunits associated with rat sympathetic preganglionic neurons. Neurosci Lett 1998;256:29-32.

Meyer J, Lentz CW, Stothert JC, Jr., Traber LD, Herndon DN, Traber DL. Effects of nitric oxide synthesis inhibition in hyperdynamic endotoxemia. Crit Care Med 1994;22:306-12.

Minson J, Kapoor V, Llewellyn-Smith I, Pilowsky P, Chalmers J. Kainic acid injection in NTS evokes hypertension and c-fos expression in spinal cord. Neuroreport 1992;3:437-40.

Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-42.

Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 1991;14:421-51.

Morrison SF, Milner TA, Reis DJ. Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the C1 adrenergic cell group. J Neurosci 1988;8:1286-301.

Morrison SF, Ernsberger P, Milner TA, Callaway J, Gong A, Reis DJ. A glutamate mechanism in the intermediolateral nucleus mediates sympathoexcitatory responses to stimulation of the rostral ventrolateral medulla. Prog Brain Res 1989a;81:159-69.

Morrison SF, Callaway J, Milner TA, Reis DJ. Glutamate in the spinal sympathetic intermediolateral nucleus: localization by light and electron microscopy. Brain Res 1989b;503:5-15.

Morrison SF, Callaway J, Milner TA, Reis DJ. Rostral ventrolateral medulla: a source of the glutamatergic innervation of the sympathetic intermediolateral nucleus. Brain Res 1991;562:126-35.

Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development 1992;116:201-11.

Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 1993;16:323-8.

Navaratnam V, Lewis PR. Cholinesterase containing neurones in the spinal cord of the rat. Brain Res 1970;18:411-25.

Neumayr RJ, Hare BD, Franz DN. Evidence for bulbospinal control of sympathetic preganglionic neurons by monoaminergic pathways. Life Sci 1974;14:793-806.

Opal SM, Cohen J. Clinical gram-positive sepsis: does it fundamentally differ from gram-negative bacterial sepsis? Crit Care Med 1999;27:1608-16.

Pagani M, Rimoldi O, Pizzinelli P, Furlan R, Crivellaro W, Liberati D, Cerutti S, Malliani A. Assessment of the neural control of the circulation during psychological stress. J Auton Nerv Syst 1991;35:33-41.



Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL,
Cunnion RE, Ognibene FP. Septic shock in humans. Advances in
the understanding of pathogenesis, cardiovascular dysfunction, and
therapy. Ann Intern Med 1990;113:227-42.

Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993;328:1471-7.

Pearson J, Pytel BA. Quantitative studies of sympathetic ganglia and spinal cord intermedio-lateral gray columns in familial dysautonomia. J Neurol Sci 1978;39:47-59.

Petras JM, Cummings JF. Autonomic neurons in the spinal cord of the Rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 1972;146:189-218.

Pyner S, Coote JH. Rostroventrolateral medulla neurons preferentially project to target-specified sympathetic preganglionic neurons. Neuroscience 1998;83:617-31.

Rangel-Frausto MS, Pittet D, Costigan M et al. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. Jama 1995;273:117-23.

Rao UC, Bijlani V. The intermediolateral gray columns in the spinal cord of Macaca mulatta. J Auton Nerv Syst 1980;2:259-67.

Reves JG, Glass PS, Lubarsky DA. Nonbarbiturate intravenous anesthetics. In: Miller RD, 5th ed. Anesthesia. Philadelphia: Churchill Livingstone, 2000:228-72.

Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M, Malliani A. Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol 1990;258:H967-76.


Rizzoli AA. Distribution of glutamic acid, aspartic acid, gamma-aminobutyric acid and glycine in six areas of cat spinal cord before and after transection. Brain Res 1968;11:11-8.

Robbe HW, Mulder LJ, Ruddel H, Langewitz WA, Veldman JB, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 1987;10:538-43.

Robertson DR. Sympathetic preganglionic neurons in frog spinal cord. J Auton Nerv Syst 1987;18:1-11.

Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 1984;4:474-94.

Ruffolo RR, Jr., Kopia GA. Importance of receptor regulation in the pathophysiology and therapy of congestive heart failure. Am J Med 1986;80:67-72.

Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, Parsonnet J, Panzer R, Orav EJ, Snydman DR, Black E, Schwartz JS, Moore R, Johnson BL., Jr. Platt R. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA 1997;278:234-40.

Sato A, Sato Y, Shimada F, Torigata Y. Changes in gastric motility produced by nociceptive stimulation of the skin in rats. Brain Res 1975;87:151-9.

Schramm LP, Adair JR, Stribling JM, Gray LP. Preganglionic innervation of the adrenal gland of the rat: a study using horseradish peroxidase. Exp Neurol 1975;49:540-53.


Schroder HD. Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. 1. Organization of spinal nuclei in animals. 2. The nucleus X-pelvic motor system in man. J Auton Nerv Syst 1985;14:23-48.

Serpell MG, DeLeo JA, Coombs DW, Colburn RW, Twitchell BB, Willenbring S, Fromm C. Intrathecal catheterization alone reduces autotomy after sciatic cryoneurolysis in the rat. Life Sci 1993;53:1887-92.

Sofroniew MV. Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 1980;28:475-8.

Spyer KM. Annual review prize lecture. Central nervous mechanisms contributing to cardiovascular control. J Physiol 1994;474:1-19.

Sternberger LA, Sternberger NH. The unlabeled antibody method: comparison of peroxidase-antiperoxidase with avidin-biotin complex by a new method of quantification. J Histochem Cytochem 1986;34:599-605.

Storkson RV, Kjorsvik A, Tjolsen A, Hole K. Lumbar catheterization of the spinal subarachnoid space in the rat. J Neurosci Methods 1996;65:167-72.

Stornetta RL, Morrison SF, Ruggiero DA, Reis DJ. Neurons of rostral ventrolateral medulla mediate somatic pressor reflex. Am J Physiol 1989;256:R448-62.

Sun MK, Hackett JT, Guyenet PG. Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res 1988;438:23-40.


Sved AF, Mancini DL, Graham JC, Schreihofer AM, Hoffman GE. PNMT-containing neurons of the C1 cell group express c-fos in response to changes in baroreceptor input. Am J Physiol 1994;266:R361-7.

Swanson LW, McKellar S. The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 1979;188:87-106.

Swanson LW, Kuypers HG. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 1980;194:555-70.

Tkacs NC, Strack AM. Systemic endotoxin induces Fos-like immunoreactivity in rat spinal sympathetic regions. J Auton Nerv Syst 1995;51:1-7.

Triedman JK, Saul JP. Blood pressure modulation by central venous pressure and respiration. Buffering effects of the heart rate reflexes. Circulation 1994;89:169-79.

Tsang BK, He Z, Ma T, Ho IK, Eichhorn JH. Decreased paralysis and better motor coordination with microspinal versus PE10 intrathecal catheters in pain study rats. Anesth Analg 1997;84:591-4.

Tsuneyoshi I, Kanmura Y, Yoshimura N. Nitric oxide as a mediator of reduced arterial responsiveness in septic patients. Crit Care Med 1996;24:1083-6.

Tucker DC, Saper CB, Ruggiero DA, Reis DJ. Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol 1987;259:591-603.

Verberne AJ, Guyenet PG. Medullary pathway of the Bezold-Jarisch reflex in the rat. Am J Physiol 1992;263:R1195-202.

Von Bergen NH, Subieta A, Brennan TJ. Effect of intrathecal non-NMDA EAA receptor antagonist LY293558 in rats: a new class of drugs for spinal anesthesia. Anesthesiology 2002;97:177-82.

Waisbren BA. Bacteremia due to gram-negative bacilli other than
the Salmonella; a clinical and therapeutic study. AMA Arch Intern Med 1951;88:467-88.

Wang BC, Hillman DE, Li D, Turndorf H. Lumbar subarachnoid catheterization in rats. Pharmacol Biochem Behav 1991;38:685-8.

Watson D, Grover R, Anzueto A, Lorente J, Smithies M, Bellomo R, Guntupalli K, Grossman S, Donaldson J, Le Gall JR. Cardiovascular effects of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) in patients with septic shock: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med 2004;32:13-20.

Wong CS, Lu CC, Cherng CH, Ho ST. Pre-emptive analgesia with
ketamine, morphine and epidural lidocaine prior to total knee replacement. Can J Anaesth 1997;44:31-7.

Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN,
Iversen LL. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A 1986;83:7104-8.

Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976;17:1031-6.



Yaksh TL, Hua XY, Kalcheva I, Nozaki-Taguchi N, Marsala M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc Natl Acad Sci U S A 1999;96:7680-6.

Yang MW, Kuo TB, Lin SM, Chan K H, Chan SHH.
Continuous, on-line, real-time spectral analysis of SAP signals during cardiopulmonary bypass. Am J Physiol 1995a;268:H2329-35.

Yang CH, Shyr MH, Kuo TB, Tan P P, Chan SHH.
Effects of propofol on nociceptive response and power spectra of electroencephalographic and systemic arterial pressure signals in the rat: correlation with plasma concentration. J Pharmacol Exp Ther 1995b;275:1568-74.

Yen DH, Yien HW, Wang LM, Lee CH. Chan SHH. Spectral analysis of systemic arterial pressure and heart rate signals of patients with acute respiratory failure induced by severe
organophosphate poisoning. Crit Care Med 2000;28:2805-11.

Yien HW, Hseu SS, Lee LC, Kuo TBJ, Lee TY. Chan SHH. Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for the prediction of patient outcome in the intensive care unit. Crit Care Med 1997;25:258-66.

Zaremba TG, Fishman PH. Desensitization of catecholamine stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis. Mol Pharmacol 1984;26:206-13.

Zeidel A, Melloul MM, Maiburd E, Dicker D, Beilin B. Tc99m macroaggregated albumin cisternography for the detection of persistent cerebrospinal fluid (CSF) leak in an animal model. J Neurosci Methods 2002;114:181-3.


Zhang YH, Lu J, Elmquist JK, Saper CB. Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord. J Neurosci 2000;20:6578-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top