第六章 參考文獻 (References)
1.中華本草. 第四冊第十卷. 上海科學技術出版社 p.86-93, 1999.
2.張正明. 梅子醃漬前果汁之製取及脫除苦味之研究. 台大食科所論文, 1984.
3.方祖達、趙昭惠. 梅子果汁成分類型分布之研究. 食品科學21 (1): 34-45, 1994.4.沈紅梅、易楊華、喬傳卓、蘇中武、李承祜. 烏梅的化學成分研究. 中草葯 26(2): 105-106, 1995.
5.沈紅梅、喬傳卓、蘇中武、李承祜. 採收、加工、植物基原對烏梅抑菌作用的影響. 中葯材 17(8): 24, 1994.
6.沈紅梅、程濤、喬傳卓、蘇中武、李承祜. 烏梅的體外抗腫瘤活性及免疫調節作用初探. 中國中葯雜誌 20(6): 365-368, 1995.
7.柏有成. 梅子核仁中β-glucosidase之純化與生化性質之探討. 台大園藝所碩士論文, 1989.8.Hies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 82: 291-295, 1997.
9.Halliwell B. Free radical and antioxidants: A personal view. Nutri Rev. 52: 253-265, 1994.
10.Minotti G and Auat SD. The requirement for iron (III) in the initiation of lipid peroxide by iron (II) and hydrogen peroxide. J Biol Chem. 3: 1098-1104, 1987.
11.Perugini C, Seccia M, Alboano E. The dynamic reduction of Cu (II) to Cu (I) and not Cu (I) availability is a sufficient trigger for low density lipoprotein oxidation. Biochim Biophys Acta. 1343: 191-198, 1997.
12.Zarger RA and Burkhart RM. Differential effects of glutathione and cystein on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack. Kidney In+.53: 1661-1672, 1998.
13.Wanagat J, Cao Z, Pathare P, and Aiken JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J. 15: 322–332, 2001.
14.Burdon R. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biol Med. 18: 775–794, 1995.
15.Crawford DR, Zbinden I, Amstad P, and Cerutti P. Oxidant stress induces the proto-oncogenes c-fos and c-myc in mouse epidermal cells. Oncogene. 3: 27–32, 1988.
16.Datta R, Hallahan DE, Kharbanda SM, Rubin E, Sherman ML, Huberman E, Weichselbaum RR, and Kufe DW. Involvement of reactive oxygen intermediates in the induction of c-jun gene transcription by ionizing radiation. Biochemistry. 31: 8300–8306, 1992.
17.Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, and Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem. 201: 99–106, 1991.
18.Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, and Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J Biol Chem. 272: 217–221, 1997.
19.Ha HC, Thiagalingam A, Nelkin BD, and Caserora JR. Reactive oxygen species are critical for the growth and differentiation of medullary thyroid carcinoma cells. Clin Cancer Res. 6: 3783–3787, 2000.
20.Meier B, Radeke HH, Selle S, Younes M, Sies H, Resch K, and Habermrhl GG. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-a. Biochem J. 263: 539–545, 1989.
21.Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, and Lambeth JD. Cell transformation by the superoxide- generating oxidase Mox1. Nature. 401: 79–82, 1999.
22.Sundaresan M, Zu-xi Y, Ferrans VJ, Irani K, and Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 270: 296–299, 1995.
23.Szatrowski TP and Nathan CE. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51: 794–798, 1991.
24.Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shan A, Harrison DG, Taylor WR, and Griendling KK. Role of NADH/NADPH oxidasederived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension. 32: 488–495, 1998.
25.Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 11: 298–300, 1956.
26.Brody JA. Prospects for an ageing population. Nature. 315: 463–466, 1985.
27.Campion EW. The oldest old. N Engl J Med 330: 1819–1820, 1994.
28.Lamberts SWJ, Van Den Beld AW, and VAN DER LELY AJ. The endocrinology of aging. Science. 278: 419–424, 1997.
29.Buscigllo J and Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature. 378: 776–779, 1995.
30.Buscigllo J and Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature. 378: 776–779, 1995.
31.Sinet PM, Coutrier J, and Dutillaux B. Trisomie 21 et superoxyde dismutase-1 (IPO-A): tentative de localisation sur la sous-bande21q22.1. Exp Cell Res. 97: 47–55, 1976.
32.Anneren G and Epstein CJ. Lipid peroxidation and superoxide dismutase-1 and glutathione peroxidase activities in trisomy 16 fetal mice and human trisomy 21 fibroblasts. Pediatr Res. 21: 88–92, 1987.
33.Brooksbank BWL and Balazs R. Superoxide dismutase, glutathione peroxidase and lipid peroxidation in Down’s syndrome fetal brain. Dev Brain Res. 16: 37–44, 1984.
34.De Haan JB, Christiano F, Iannello RC, and Kola I. Cu/Zn-superoxide dismutase and glutathione peroxidase during aging. Biochem Mol Biol Int. 35: 1281–1297, 1995.
35.De Haan JB, Wolvetang EJ, Christiano F, Iannello RC, Bladier C, Kelner MJ, and Kola I. Reactive oxygen species and their contribution to pathology in Down’s syndrome. Adv Pharmacol. 38: 379–402, 1997.
36.Flescher E, Ledbetter JA, Schieven GL, Vela-Roch N, Fossum D, Dang H, Ogawa N, and Talal N. Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction. J Immunol. 153: 4880–4889, 1994.
37.Dogasaki C, Murakami H, Nishijima M, Yamamoto K, and Miyazaki T. Antimutagenic activities of hexane extracts of the fruit extract and the kernels of Prunus mume Sieb. et Zucc. Yakugaku Zasshi. 112:577-584, 1992.
38.Chuda Y, Ono H, Ohnishi-Kameyama M, Matsumoto K, Nagata T, and Kikuchi Y. Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). J Agric Food Chem. 47: 828–831, 1999.
39.Utsunomiya H, Takekoshi S, Gato N, Utatsu H, Motley ED, Eguchi K, Fitzgerald TG, Mifune M, Frank GD, and Eguchi S. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sci .
72: 659–667, 2002.
40.Matsuda H, Morikawa T, Ishiwada T, Managi H, Kagawa M, Higashi Y, and Yoshikawa M. Medicinal flowers. VIII. Radical scavenging constituents from the flowers of Prunus mume: structure of prunose III. Chem Pharm Bul . 51: 440–443, 2003.
41.Van Den Berg R, Haene GR, Van Den Berg H, and Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511-517, 1999.
42.Wayner DDM, Burton GW, Ingold KU, Barclay LRCI, and Locke JF. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophy Acta. 924: 408-419, 1987.
43.Tsai CH, Chang RC, Chiou JF, and Liu TZ. Improved superoxide-generating system suitable for the assessment of the superoxide-scavenging ability of aqueous extracts of food constituents using ultraweak chemiluminescence. J Agric Food Chem. 51: 58-62, 2003.
44.Tsai CH, Stern A, Chiou JF, Chern CL, and Liu TZ. Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter: application to hydroxyl radical- scavenging ability of aqueous extracts of Food constituents. . J Agric Food Chem. 49: 2137-2141, 2001.