跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭志翔
研究生(外文):Chih-Hsiang Peng
論文名稱:次微米金氧半場效電晶體製作之新型壓控振盪器與高效能自振式混波器
論文名稱(外文):Novel Voltage-Controlled Oscillators and High Performance Self-Oscillating Mixer Constructed with CMOS Technology
指導教授:江逸群江逸群引用關係
指導教授(外文):Yi-Chyun Chiang
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:50
中文關鍵詞:金氧半場效電晶體雙頻帶壓控振盪器自振式混波器
外文關鍵詞:CMOSdual–band VCO (DVCO)self–oscillating mixer (SOM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出三個電路的設計和製作,包含兩個利用互補式簡化型交連耦合設計的壓控振盪器和一個自振式混波器。電路皆以TSMC 0.18 μm 1P6M CMOS製程來製作。
操作頻率在15 GHz的Ku band壓控振盪器具有大約–4 dBm的輸出功率,實際量測到的相位雜訊在偏移中心頻率1 MHz 時為–103.11 dBc/Hz。Ku band壓控振盪器的FOM是–178.2 dBc/Hz。雙頻帶壓控振盪器在工作偏壓為1.5 V時,偏壓電流為2 mA。實際量測相位雜訊在2.14 GHz偏移中心頻率1 MHz 時為–117.94 dBc/Hz,在4.5 GHz偏移中心頻率1 MHz 時為–111.09 dBc/Hz。雙頻帶壓控振盪器的FOM分別為–179.8和–179.4 dBc/Hz。自振式混波器在RF輸入頻率為9.2 GHz時大約有6 dB的轉換增益。實際量測電路的LO相位雜訊在6.84 GHz偏移中心頻率1 MHz時為–135.6 dBc/Hz,FOM為–198.609 dBc/Hz。
This thesis proposes three circuits and they are designed, implemented, and measured. These circuits include two complementary simplified cross–coupled VCOs and a self–oscillating mixer fabricated in TSMC 0.18 μm 1P6M CMOS process.
The Ku–band oscillator at the center frequency of 15 GHz associated with about –5 dBm output power. Measured phase noise is –103.11 dBc/Hz at 1 MHz offset. The Ku–band VCO achieves the FOM of –178.2 dBc/Hz. The dual–band VCO core draws 2 mA of current from 1.5 V power supply voltage. Measured phase noise at 1 MHz offset is –117.94 dBc/Hz and –111.09 dBc/Hz in the 2.14 GHz and 4.5 GHz band. The dual–band VCO achieves FOMs of –179.8 and –179.4 dBc/Hz, respectively. The conversion gain of the self–oscillating mixer (SOM) is about 6 dB at 9.2 GHz RF frequency. Measured LO phase noise is –135.6 dBc/Hz at 1 MHz offset. The SOM achieves the FOM of –198.609 dBc/Hz.
目 錄
誌謝……………………………………………………………………iv
中文摘要…………………………………..……………………………..v
英文摘要……………………………...…………………………………vi
目錄……………………………………………………………………vii
圖目錄…….………………………………..……………………………ix
表目錄……………………………...……………………………………xi

第一章 前言 1
1.1 研究動機 1
1.2 壓控振盪器相位雜訊對系統的影響 1
1.3 LC壓控振盪器架構簡介 4
1.4 章節概述 7
第二章 簡化型壓控振盪器 8
2.1 簡介 8
2.2 電路架構說明分析 10
2.3 18 GHz壓控振盪器 14
2.3.1 研究動機與相關研究 14
2.3.2 設計與製作流程 14
2.3.3 模擬與量測結果 15
2.3.4 結果與討論 17
2.4 雙頻帶壓控振盪器 19
2.4.1 研究動機與相關研究 19
2.4.2 設計與製作流程 20
2.4.3 模擬與量測結果 21
2.4.4 結果與討論 24
2.5 總結 26

第三章 自振式混波器 27
3.1 簡介 27
3.2 電路架構說明分析 28
3.3 使用電流再利用之互補式自振混波器 31
3.3.1 研究動機與相關研究 31
3.3.2 設計與製作流程 32
3.3.3 模擬與量測結果 35
3.3.4 結果與討論 42
第四章 結論 47
參考文獻 48
[1]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid–State Circuits, vol. 33, pp. 179–194, Feb. 1998.
[2]A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid–State Circuits, vol. 34, pp. 717–724, May 1999.
[3]D. Hum and A. Hajimiri, “Concept and Methods in Optimization of Integrated LC VCOs,” IEEE J. Solid–State Circuits, vol. 36, no.6, pp.896–909, June 2001.
[4]B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid–State Circuits, vol. 31, pp.331–343, March 1997.
[5]A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Kluwer Academic, 1999.
[6]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[7]J. W. M. Rogers, J. A. Macedo, and C. Plett, “The effect of varactor nonlinearity on the phase noise of completely integrated VCO,” IEEE, J. Solid–State Circuits, vol. 35, no. 9, pp. 1360–1367, Sep. 2000.
[8]S.-J. Yun, S.-B. Shin, H.-C. Choi, and S.-G. Lee, “A 1mW current-reuse CMOS differential LC-VCO with low phase noise,” IEEE Int. Solid-State Circuits Conf., vol. 1, pp.540-616, Feb 2005.
[9]N. Fong, J. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and N. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE, J. Solid–State Circuits, vol. 38, no. 8, pp. 1333–1342, Aug. 2003.
[10]A. Mostafa and M. El-Gamal, “A Sub-1-V 4-GHz CMOS VCO and a 12.5-GHz oscillator for low-voltage and high-frequency applications,” in IEEE European Solid State Circuits Conf, Sep. 2000.
[11]C. De Ranter and J. Steyaert, “A 0.25um CMOS 17GHz VCO,” in IEEE Int. Solid–State Circuits Conf., pp. 370-372, 2001.
[12]Lin Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-band cross-coupled complementary oscillator with low phase-noise performance,” IEEE Microwave Theory and Techniques, vol. 52. pp. 1273-1278, Apr. 2004.
[13]S.-M. Yim and K. K. O, “Demonstration of a Switched Resonator Concept in a Dual–Band Monolithic CMOS LC–Tuned VCO,” in Proc. IEEE Custom Integr. Circuits Conf., May 2001, pp.205–208.
[14]M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor,” in Proc. Eur. Solid–State Circuits Conf., Sep. 2002, pp. 799–802.
[15]C. Lam and B. Razavi, “A 2.6 GHz/5.2 GHz CMOS voltage–controlled oscillator,” in IEEE Int. Solid–State Circuits Conf., 1999, pp. 402–403.
[16]L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do, and W. M. Lim, “A 1.8–V 2.4/5.15–GHz Dual–Band LC VCO in 0.18–μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 194–196, Apr. 2006.
[17]F. Herzel, H. Erzgraber, and N. Ilkov, “A new approach to fully integrated CMOS LC–oscillator with a very large tuning range,” in Proc. Custom Integrated Circuits Conf., Orlando, FL, May 2000, pp. 573–576.
[18]P. Park, C.–S. Kim, M.–Y. Park, S.–D. Kim, and H.–K. Yu, “Variable inductance multilayer inductor with MOSFET switch control,” IEEE Electron Device Lett., vol. 25, no. 3, pp. 144–146, Mar. 2004.
[19]J. Tham, M. A. Margarit, B. Pregardier, C. D. Hull, R. Magoon, and F. Carr, “A 2.7–V 900 MHz/1.9–GHz dual–band transceiver IC for digital wireless communication,” IEEE, J. Solid–State Circuits, vol. 34, no. 3, pp. 286–291, Mar. 1999.
[20]M. J. Roberts, S. Iezekiel, and C. M. Snowden, “A W–band self–oscillating subharmonic MMIC mixer,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2104–2018, Dec. 1998.
[21]N. Bourhill, S. Iezekiel, and D. P. Steenson, “A millimeter–wave fiber–radio downlink based on optically controlled MMIC self–oscillating mixers,” in Proc. 33rd Eur. Microwave Conf., 2003, pp. 607–610.
[22]J. V. D. Tang and D. Kasperkovitz, “A 0.9–2.2–GHz monolithic quadrature mixer oscillator for direct–conversion satellite receiver,” in IEEE Int. Solid–State Circuits Conf., Feb. 1997, pp. 88–89.
[23]B. Razavi, “A 2–GHz 1.6–mW phase–locked loop,” IEEE J. Solid–State Circuits, vol. 32, no. 5, pp. 730–735, May 1997.
[24]M. B. Bendak, B. A. Xavier, and P. M. Chau, “A 1.2–GHz CMOS quadrature self–oscillating mixer,” in IEEE Int. Circuits Systems Symp., Jun. 1999, pp. 434–437.
[25]T.-P. Wang, C.-C. Chang, R.-C. Liu, M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and H. Wang, “A Low-Power Oscillator Mixer in 0.18-μm CMOS Technology,” IEEE Microwave Theory and Techniques, vol. 54. pp. 88-95, Jan. 2006.
[26]D. M. Pozar, Microwave Engineering, New York: Wiley, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top