(3.236.228.250) 您好!臺灣時間:2021/04/19 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡豐磯
研究生(外文):Feng-Ji Tsai
論文名稱:射頻濺鍍與電子束蒸鍍兩種方法沉積三氧化二鐠之閘介電層電性比較
論文名稱(外文):Comparison of electrical characteristics of praseodymium oxide gate dielectrics for rf-sputtering and e-beam methods
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:45
中文關鍵詞:高介電材料三氧化二鐠
外文關鍵詞:high-K gate dielectricPr2O3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用射頻濺鍍與電子束蒸鍍兩種方式沉積氧化鐠之閘介電層電性比較。並探討使用氮化鉭及鋁兩種不同金屬閘極在氧化鐠上之影響。由實驗結果得知,射頻濺鍍在沉積氧化鐠薄膜時,由於矽會從基板擴散上來,而使氧化鐠在經過600℃高溫退火處理之後,會與矽形成矽酸鹽,造成等效厚度的上升。而電子束蒸鍍則可將退火溫度提升至700℃也不會有矽酸鹽的形成。因此電子束蒸鍍方式沉積出來的薄膜有比較好的熱穩性。又從實驗結果得知,使用氮化鉭這個金屬閘極比鋁金屬閘極的電容值還高。主要是氮化鉭金屬閘極與氧化鐠之間不易起反應,形成等效電容,造成電容串聯,使電容值下降。
This thesis is comparison of electrical characteristics of praseodymium oxide gate dielectrics for rf-sputtering and electron-beam evaporation methods. The effect of TaN and Al metal gates on praseodymium oxide was study. From experimental result, praseodymium oxide gate dielectric films were formed silicates after 600℃ annealing for rf-sputtering method. As a result of Si atoms will be diffusion to praseodymium oxide from silicon substrate when this film was deposited by rf-sputtering. However, electron-beam method was formed silicates after 700℃ annealing. Therefore, the electron-beam deposition method has a better thermal stability than rf-sputtering method. The use of TaN metal gate has a higher capacitance value than Al metal gate. Because of TaN metal gate is not easier reaction with under praseodymium oxide, resulting in the decrease of equivalent capacitance.
Contents
Acknowledgment………………………………………………………...i
Abstract (in Chinese)…………………………………………………...ii
Abstract (in English)…………………………………………………...iii
Contents………………………………………………………………….v
Figure Captions……………………………………………………......vii
Chapter 1 Introduction
1-1 General Background………………………….……………..1
1-2 High-K Gate Dielectric Selection…………………………...2
1-3 Motivation in This Study……………………………………4
1-4 Organization of This Thesis…………………………………5
Chapter 2 Praseodymium Oxide of Material Analysis Were Deposited by
RF-Sputtering and E-Beam Evaporator
2-1 Introduction…………………………………………………..8
2-2 Experimental Procedures
(1) RF sputtering process flow……………………………….9
(2) Electron-beam evaporator process flow…………………10
2-3 Results and Discussions
2-3-1 XRD of Praseodymium Oxide Films Analysis……...10
2-3-2 XPS of Praseodymium Oxide Films Analysis………11
2-4 Summaries…………………………………………………..12
Chapter 3 Electrical Characteristics of Praseodymium Oxide Gate
Dielectrics for RF-Sputter and E-Beam Methods
3-1 Introduction………………………………………………..19
3-2 Experimental Procedures
(1) RF sputtering process flow……………………………...20
(2) Electron-beam evaporator process flow…………………21
3-3 Results and Discussions
3-3-1 RF-Sputtering Deposited Pr2O3 with Al and TaN Metal
Gates
3-3-1-1 Capacitance Characteristics……………...21
3-3-1-2 J-V Characteristics……………………….23
3-3-2 E-Beam Deposited Pr2O3 with Al Metal Gate
3-3-2-1 Capacitance Characteristics……………….23
3-3-2-1 J-V Characteristics………………….……..24
3-3-3 Comparison of RF-Sputtering and E-beam Deposited
Pr2O3 Gate Dielectric with Al Metal Gate
3-3-3-1 Capacitance Characteristics……………….24
3-3-4 Other Characterizations
3-3-4-1 Weibull Distribution of RF-Sputtering with
aN Metal Gate…………………………24
3-3-4-2 Constant Voltage Stress of RF-Sputtering
with TaN Metal Gate……………….…….25
3-3-4-3 Dit of RF-sputtering with TaN Metal gat....25
3-4 Summaries…………………………………………………26
Chapter 4 Conclusions and Suggestions for Future work
4-1 Conclusions………………………………………………..41
4-2 Future Work………………………………………………..42
Reference……………………………………………………………….43
Reference
[1] www.intel.com/technology/mooreslaw/index.htm
[2] Depas M, Vermeire B, Mertens P W. Van Meirhaeghe R L and Heyns M M. Solid-State Electron. vol. 38, pp.1465, 1995.
[3] Lo S H, Buchanan D A, Taur Y and Wang W IEEE Electron Devices lett. vol.18, pp.209, 1997.
[4] Fromhold A T 1981 Quantum Mechanics for Applied physics and
Engineering ( New Your:Dover).
[5] S. A. Campbell, D. C. Gilmer, X. C. Wang, H. S. Kim, and J. Yan,“ MOS transistors fabricated with high permittivity TiO dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104–109, May 1997.
[6] W. J. Qi, R. Nieh, B. H. Lee, K. Onishi, and L. Kang, “Performance of MOSFETs with ultra-thin ZrO and Zr silicate gate dielectrics,” in VLSI Tech. Dig. pp. 15–16, 2000.
[7] A. Chin, Y. H.Wu, S. B. Chen, C. C. Lias, andW. J. Chen, “High quality La2O3 and Al 2O3 gate dielectrics with equivalent oxide thickness 5–10A,” in VLSI Tech. Dig., pp. 13–14, 2000.
[8] Sanghun Jeon, Kiju Im, Hyundoek Yang, Hyelan Lee, Hyunjun Sim, Sangmu Choi, Taesung Jang, and Hyunsang Hwang “Excellent Electrical Characteristics of Lanthanide (Pr, Nd, Sm, Gd, and Dy) Oxide and Lanthanide-doped Oxide for MOs Gate Dielectric Applications,” in IEDM, pp.471-474, 2001.
[9] Jack C. Lee, “ Ultra-thin gate dielectric and High-K dielectrics. ”, IEEE EDS Vanguard series of independent short course.
[10] B.Cheng et al, “The impact of high-/spl kappa/ gate dielectrics and metal gate electrodes on sub-100nm MOSFETs”, IEEE Tran. Electron Device, vol.46, pp.1537, 1999.
[11] G. D. Wilk, R. M. Wallace, J. M. Anthony, “High-K gate dielectrics:Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, pp. 5243, 2001.
[12] D. L. Kwong, “Self-aligned ultra-thin HfO2 CMOS transistors with high quality CVD TaN gate electrode”, VLSI, 9.1. 2002
[13] Jack C. Lee, “Hard and soft-breakdown characteristics of ultra-thin HfO2 under dynamic and constant voltage stress”, IEDM 2002.
[14] T. Kauerauf*, R. Degraeve, E. Cartier, B.Goveoreanu, P.Blomme, B.Kaczer, L.Pantisano, A.Keber, G.Groeseneken, “Towards understanding degradation and breakdown of SiO2/high-k stacks”, IDEM 2002.
[15] R. McKee, F. Walker, and M. Crisholm, Phys. Rev Lett. vol.81, pp.3104, 1998.
[16] K. Eisenberger et al., Appl. Phys. Lett vol.76, pp.1324, 2000.
[17] H. J. Osten, J. P. Liu, E. Bugiel, H.-J. Mussig, and P. Zaumseil, Mater. Sci. Eng., vol.87, pp.297, 2001.
[18] M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. vol.24, pp.436, 2000.
[19] G. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. vol.87, pp.484, 2000.
[20] K. J. Hubbard and D. G. Schlom, J. Mater. Res vol.11, pp.2757, 1996.
[21] S.-K. Kang, D.-H. Ko, E.-H. Kim, M.-H. Cho, and C. N. Whang, Thin Solid Films vol.8 pp.353, 1999.
[22] J.-P. Maria, D. Wicaksana, A. I. Kingon, B. Busch, H. Schulte, E. Garfunkel, and T. Gustafsson, J. Appl. Phys. vol.90, pp.3476, 2001.
[23] Y. H. Wu, M. Y. Yang, A. Chin, W. T. Chen, and C. M. Kwei, IEEE Electron. Device Lett. vol.21, pp.241, 2000.
[24] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. vol.77, pp.130, 2000.
[25] Haruhiko Ono, Tooru Katsumata, Appl. Phys. Lett. vol.78, pp.1832 2001.
[26] L. Manchanda, M. L. Green, R. B. van Dover, M. D. Morris, A. Kerber, Y. Hu, J.-P. Han, P. J. Silverman, T. W. Sorsch, G. Weber, V. Donnelly, K. Pelhos, F. Klemens, N. A. Ciampa, A. Kornblit, Y. O. Kim, J. E. Bower, D. Barr, D. Barr, E. Ferry, D. Jacobson, J. Eng, B. Busch and H. Schulte, “Si-doped aluminates for high temperature metal-gate CMOS: Zr-Al-Si-O, a Novel gate dielectric for low power applications”, IEDM Tech. Dig.,pp.23-26, 2000.
[27] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 AND Zr silicate gate dielectrics”, IEDM Tech. Dig., pp.27-30, 2000.
[28] S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode”, IEDM Tech. Dig., pp.31-34,2000.
[29] L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S.r Gopalan, R. Choi, and J. C. Lee, “ MOSFET devices with polysilicon on single-layer HfO2 high-k dielectrics”, IEDM Tech. Dig., pp.35-38, 2000.
[30] B. H. Lee, R. Choi, L Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W.-J. Qi, C. KANG AND j. c. Lee, “characteristics of TaN gate MOSFET with ultrathin hafnium oxide(8Å-12 Å)”, IEDM Tech. Dig., pp.39-42, 2000.
[31] A. Chin, Y. H.Wu, S. B. Chen, C. C. Lias, andW. J. Chen, “High quality La2O3 and Al 2O3 gate dielectrics with equivalent oxide thickness 5–10A,” in VLSI Tech. Dig., pp. 13–14, 2000.
[32] J. A. Gupta, D. Landheer, J. P. McCaffrey, and G. I. Sproule, “Gadolinium silicate gate dielectric films with sub-1.5nm equivalent oxide thickness”, Appl. Phys. Lett., vol.78, pp.1718-1720, 2001.
[33] S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, and H. Hwang., ”Excellent Electrical characteristics of Lanthanide (Pr, Nd, Sm, Gd, and Dy)) oxide and Lanthanide-doped Oxide for MOS Gate Dielectric Applications”, IEDM Tech. Dig.,pp471-471, 2001.
[34] R. Choi et, “High-quality Ultra-thin HfO2 Gate Dielectric MOSFETs with TaN Electrode and Nitridation Surface Preparation, “ Symp VLSI tech., p.15, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔