跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李建德
研究生(外文):Jian Der Lee
論文名稱:射頻濺鍍沉積三氧化二釔與三氧化二釹閘介電層之電性及物性研究
論文名稱(外文):The electrical characteristics and physical properties of thin yttrium oxide and neodymium oxide gate dielectrics by reactive RF-sputtering
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:68
中文關鍵詞:三氧化二釔三氧化二釹高介電質材料
外文關鍵詞:yttrium oxideneodymium oxidehigh-k
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:126
  • 收藏至我的研究室書目清單書目收藏:0
根據ITRS的預測,閘極氧化層的漏電流效應會因為直接穿透效應的因素而變大,不但使元件壽命降低,也會造成不必要的功率損秏。隨著元件微縮,想要元件仍然有好的電性,取代傳統的二氧化矽是必要的。為了解決這些問題,我們使用高介電質材料取代之,像三氧化二鉿,三氧化二釓,三氧化二鑭,三氧化二釔,三氧化二釹…等。我們對高介電質材料的要求有好的熱穩定性、製程整合與金屬閘極的相容性、大的能階差。
本篇論文探討利用濺鍍方式來沉積三氧化二釔與三氧化二釹的電性及物理特性。此外,我們也利用NH3電漿的方式,探討它對三氧化二釔薄膜的影響。我們發現經由NH3電漿處理後能抑制interfacial layer的長成也能改善電性,如提高崩潰的電場和降低漏電流等。最後,我們使用多種氬氣比氧氣流量比例沉積薄膜,找出最合適的沉積比例。經由實驗後,我們發現對三氧化二釔薄膜而言,以氬氣:氧氣為25:5為最好。另外就三氧化二釹薄膜而言,以氬氣:氧氣為12.5:12.5為最佳。以此條件沉積出來的薄膜,都有較薄的厚度,較低的漏電流與較高的崩潰電壓。
In this work, the yttrium oxide and neodymium oxide film were deposited on Si substrate by RF-sputtering. We investigated the influence of NH3 plasma on yttrium oxide film. It is found that the breakdown electrical field and gate leakage were improved by NH3 plasma treatment. Therefore, it suppresses the formation of the interfacial layer and silicate. In addition, we study the influence of Ar:O2 ratios to optimize the Y2O3 sputtering condition. We found that the optimize sputtering gas conditions for Y2O3 thin film is Ar:O2=25:5. This condition exhibits thinner thickness, lower gate leakage current, and higher breakdown voltage. The film (Ar:O2=25:5) is more comparability with Y2O3 component structure. The surface morphology of the yttrium oxide films, RMS decreases with R (O2/Ar) decreases. Also, we study the influence of Ar:O2 ratios to optimize the Nd2O3 sputtering condition. Optimize PDA temperature for Nd2O3 thin films is 600˚C. From the C-V curve, we found that the condition (Ar:O2=12.5:12.5) has thinner Nd2O3 film thickness.
Acknowledgment i
Chinese Abstract ii
English Abstract iii
Contents iv
Content of Figures vii
List of Tables x
Chapter 1 Introduction
1-1 CMOS technology scaling trends…………………………1
1-2 The limit of gate oxide scale……..……………………2
1-3 High-k condidates…………………...……………………2
1-4 Stability of high-k dielectric layer...……………………2
1-5 Issues for interface engineering…...……………………3
1-6 The motivation in this study………...……………………3
1-7 Thesis Organization…………………...……………………4

Chapter 2 The Physical Properties of Yttrium Oxide
2-1 Introduction…………………………………………….……...6
2-2 Experiment…………………………………….……………..7
2-3 Results and Discussion………………….…………………….7
2-3-1 XRD of yttrium oxide film analysis……………………7
2.3.2 XPS of yttrium oxide film analysis….………………...7
2-4 Summary……………………………………….……………….8
Chapter 3 The Electrical Characteristic of Yttrium Oxide Film MOSCAP
3-1 Introduction……………………………………….…….13
3-2 Experiment………………………………………….…………13
3-3 Results and Discussion………………………….……………...13
3-3-1 Basic yttrium oxide thin film MOSCAP characteristic….14
3-3-2 NH3 plasma pre-treatment effect on yttrium oxide thin film MOSCAP…………………………………...……………16
3-4 Summary……………………………………………….…….27
Chapter 4 The Electrical Characteristics and Physical Properties of O2/Ar Sputter Ratio on Yttrium Oxide Films
4-1 Introduction…………………………………………….……...30
4-2 Experiment…………………………………….……………..30
4-3 Results and Discussion………………………..…..………….31
4-3-1 XPS of yttrium oxide film for different gas ratio analysis……………………………………...…………..31
4-3-2AFM of yttrium oxide film for different gas ratio analysis………………………………..…………….…..32
4-3-3 C-V and J-V characteristics of MOSCAP with yttrium oxide gate dielectric using various Ar/O2 ratio................32
4-4 Summary……………………………………….……………….34
Chapter 5 The Electrical Characteristics and Physical Properties of O2/Ar Sputter Ratio on Neodymium Oxide Films
5-1 Introduction…………………………………………….……...53
5-2 Experiment…………………………………….……………..53
5-3 Results and Discussion………………………..…..………….54
5-3-1 C-V and J-V characteristics of MOSCAP with neodymium oxide gate dielectric using various Ar/O2 ratio……………………………………………...............54
5-4 Summary……………………………………….……………….55
Chapter 6 Conclusions and Future Works
6-1 Conclusions…………………………………….……………63
6-2 Future works…………….…………………………………63
1.IRTS, Semiconductor Industry association, San Jose, CA, 2005.
2.G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol.89, no.10, pp. 5243-5275, 2001.
3.J. Kwo, M. Hong, A. R. Kortan, “Properties of high k gate dielectrics Gd2O3 and Y2O3 for Si,” J. Appl. Phys., vol.89, no.7, pp. 3920-3927, 2001.
4.B. W. Busch, J. Kwo, M. Hong, J. P. Mannaerts, B. J. Sapjeta, W.H. Schulte,E. Garfunkel, and T. Gustafsson, “Interface reactions of high- Y2O3 gate oxides with Si,” Appl. Phys. Lett., vol.79, no.15, pp. 2447-2449, 2001.
5.T. Gougousi, M. J. Kelly, and G. N. Parsons, “The role of the OH species in high-k/polycrystalline silicon gate electrode interface reactions,” Appl. Phys. Lett., vol.80, no.23, pp.4419-4421, 2002.
6.D. Niu, R. W. Ashcraft, and G. N. Parsons, “Water absorption and interface reactivity of yttrium oxide gate dielectrics on silicon,” Appl. Phys. Lett., vol.80, no.19, pp.3575-3577, 2002.
7.C. Durand, C. Dubourdieu, C. Vallee, “Structural and Electrical Characterizations of Yttrium Oxide Films after Postannealing Trreatments,” J. Electrochem. Soc., vol.152, no. 12, pp. F217-F225, 2005.
8.Tung-Ming Pan, Chao-Sung Liao, Hui-Hsin Hsu, Chun-Lin Chen , Jian-Der Lee, Kuan-Ti Wang, “Excellent frequency dispersion of thin gadolinium oxide high-k gate dielectrics,” Appl. Phys. Lett., vol. 87, pp. 262908-1- 262908-3, 2005.
9.H. Harris, K. Choi, N. Mehta, A. Chandolu, N. Biswas, G. Kipshidze, and S. Nikishin, “HfO2 gate dielectric with 0.5 nm equivalent oxide thickness,” Appl. Phys. Lett., vol. 81, no. 6, pp. 1065-1067, 2002.
10.J. J. Chambers, and G. N. Parsons, “Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon,” J. Appl, Phys., vol. 90, no. 2, pp.918-933, 2001.
11.Renee Nieh, Rino Choi, Sundar Gopalan, “Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics,” Appl. Phys. Lett., vol. 81, no. 9, pp. 1663-1665, 2002.
12.C. H. Chen, Y. K. Fang, “Origins and effects of radical-induced re-oxidation in ultra-thin remote plasma nitrided oxides,” Electronics Letters., vol. 37, no. 22, pp. 1367-1369, 2001.
13.C. H. Chen, Y. K. Fang, “Thermally-enhanced remote plasma nitrided ultrathin (1.65 nm) gate oxide with excellent performances in reduction of leakage current and boron diffusion,” IEEE Electron Devices Lett., vol. 22, pp. 378-380, 2001.
14.Anthony S. Oates, “Reliability Issues for High-K Gate Dielectrics,” in IEDM Tech. Dig., pp. 38.2.1-38.2.4, 2003.
15.Se Jong Rhee, Chang Young Kang, Chang Seok Kang, “Effects of varying interfacial oxide and high-k layer thicknesses for HfO2 MOSFET,” Appl. Phys. Lett., vol. 85, no. 7, pp. 1286-1288,2004.
16.Zhihong Zhang, Min Li, Stephen A. Campbell, “A Study on Charge Reduction in HfO2 Gate Stacks,” IEEE Trans. Electron Devices., vol. 52, no. 8, pp.1839-1844, 2005.
17.L. Pereira, P. Barquinha, E. Fortunato, “Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide,” Materials Sci. and Eng. B., vol. 118, pp. 210-213, 2005.
18.A. A. Dakhel, “Electrical conduction processes in neodymium oxide thin films prepared on Si(100) substrates,” Journal of Alloys and Compounds., vol. 376, pp.38-42,2004.
19.M. Leskelä, M, Ritala, “Rare-earth oxide thin films as gate oxides in MOSFET transistors,” Solid States Chem., vol.171, pp. 170-174, 2003.
20.Anne Kosola, Matti Putkonen, “Neodymium oxide and neodymium aluminate thin films by atomic layer deposition,” thin solid films., vol. 479, pp. 152-159, 2005.
21.Paolo Pavan, Roberto Bez, Piero Olivo, “Flash Memory Cells-An Overview,” Proc. IEEE., vol. 85, no. 8, pp.1248-1271, 1997.
22.J. J. Lee, X.Wang, W. Bai, “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device with HfO2 High-k Tunneling Dielectric,” in Dig VLSI Symp VLSI Technology., pp. 33-34, 2003.
23.Sangmoo Choi, Myungjun Cho, “Improved metal-oxide-nitride-oxide-silicon-type flash device with high-k dielectrics for blocking layer,” J. Appl. Phys., vol. 94, no. 8, pp. 5408-5410,2003.
24.Yu-Hsien Lin, Chao-Hsin Chien, Ching-Tzung Lin, “High Performance Multi-bit Nonvolatile HfO2 Nanocrystal Memory Using Spinodal Phase Separation of Hafnium Silicate.” in IEDM Tech. Dig., pp.759, 2004.
25.Jong Jin Lee, Dim-Lee Kwong, “Metal Nanocrystal Memory With High-k Tunneling Barrier for Improved Data Retention,” IEEE Trans. Electron Devices., vol. 52, no. 4, pp.507-511, 2005.
26.Feng Zhu, Se Jong Rhee, “Improving Channel Carrier Mobility and Immunity to Charge Trapping of High-K NMOSFET by Using Stacked Y2O3/HfO2 Gate Dielectric,” IEEE Electron Devices Lett., vol. 26, no. 12, pp.876-878, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top