跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕宏
研究生(外文):Yi-Hung Chen
論文名稱:生醫訊號應用之1伏特10位元低功率連續近似類比數位轉換器
論文名稱(外文):A 1V 10-bit Low Power Successive Approximation Analog to Digital Converter for Biomedical Applications
指導教授:周煌程
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:126
中文關鍵詞:類比數位轉換器 生醫訊號 低電壓 低功率 偏移電壓消除 電荷回收技術
外文關鍵詞:ADCDAC1V Rail-to-RailCharge RecyclingLow powerLow voltageBiomedical signal
相關次數:
  • 被引用被引用:2
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生醫訊號系統電路中,類比數位轉換器(ADC),扮演將連續類比生理信號轉換為可處理數位信號的重要工作,數位信號再依使用需求做分析與處理統計,也是因為ADC在系統電路中操作使用頻繁,所以ADC電路設計中功率消耗大小就成為重要的考量因素。
本論文主要針對生醫訊號中波形特性,透過數位類比轉換器(DAC)使用電荷回收(Charge Recycle)方法,可以讓電路工作在低輸入電壓時電荷有效的回收利用,有效完成降低DAC電路消耗能量。
因應生醫訊號應用,因此對電路的準確度與解析度相當程度的要求,為了ADC可以正確轉換避免過程中受到誤差而轉換錯誤,論文中設計使用互補式信號產生電路與多級偏壓消除電路來增加電路準確度與線性度,目的都為改善電路誤差影響。
此外,比較器電路負責比較輸入電壓與DAC參考電壓,本論文實現工作電壓在一伏特全輸入擺幅輸入,利用CDB(Current Driven Bulk)來降低臨界電壓值,達到一伏特全擺幅輸入放大器。
本論文ADC電路實現工作於一伏特環境下,平均功率為32.5uw,應用心電訊號下平均功率為29.5uw可再減少9%能量損耗,靜態特性DNL≦0.25LSB、INL≦0.45LSB、SNR=58dB有效位元9.4位元的結果。
In a biomedical signal processing system, an ADC is an important circuit that successively converts analog biomedical signals into digital data for next analysis and processing. However, the ADC operates continuously. The power consumption is a very important factor in ADC circuit design.
A low power DAC suitable for biomedical signals is proposed in the ADC of this thesis. Through charge recycling technique in DAC circuit, the charge can be effectively reused to reduce power at the low input voltage.
The circuit accuracy and resolution are very essential, because of the application to biomedical signals. In order to increase both accuracy and linearity, the complementary signal generator and the multi-stage offset cancellation circuit are incorporated.
Besides, the comparator compares the input voltage and the DAC output reference voltage. The circuit achieves the 1 volt operation with a rail-to-rail input common range through the current driven bulk (CDB) technique to reduce threshold voltages.
In this thesis, a 1V supply voltage ADC is obtained with average power 32.5uW. For applications to biomedical signals the average power consumption is further reduced 9%. The differential nonlinearity (DNL) and integral nonlinearity (INL) results are less than 0.25LSB and 0.45LSB, respectively. The signal to noise ratio is 58dB and the effective bit resolution is 9.4 bit.
第一章 緒論…………………………………………………………...-1-
1.1 研究背景………………………………………………………-1-
1.2 研究動機………………………………………………………-2-
1.3 研究方向………………………………………………………-3-
1.3.1 數位電路研究…………………………………………..-5-
1.3.2 類比電路研究…………………………………………..-5-
1.4 論文結構說明…………………………………………………-6-
第二章 基本連續近似ADC結構………………………………….…...-8-
2.1 SA-ADC的結構與演算方法………………………………….-8-
2.2 時序控制與簡介……………………………………………..-11-
2.3 一般數位類比轉換器使用…………………………………..-12-
2.3.1數位類比轉換器說明………………………………….-12-
2.3.2 通用數位類比轉換器結構介紹………………………-15-
2.4比較器偏移電壓消除方法與分析…………………………...-21-
2.4.1 比較器的使用…………………………………………-21-
2.4.2偏移電壓的影響……………………………………….-23-
2.4.3偏移電壓消除方法…………………………………….-24-
2.4.3.1 輸入偏移儲存方式……………………………..-24-
2.4.3.2 輸出偏移儲存方式……………………………..-27-
2.5一伏特比較器電路…………………………………………...-29-
2.5.1應用於一伏特類比數位轉換器比較器……………….-30-
2.5.2一般一伏特比較器電路……………………………….-31-
第三章 一伏特低功率連續近似類比數位轉換器設計…………….-33-
3.1適合生醫訊號類比數位轉換器特性與架構………………..-33-
3.1.1 適合生醫訊號類比數位轉換器特性…………….…...-33-
3.1.2 生醫訊號SA-ADC電路架構…………………………-35-
3.2 數位電路設計 ………………………………………………-37-
3.2.1 數位控制邏輯電路設計………………………………-38-
3.2.2 移位暫存器電路設計…………………………………-43-
3.2.3 新的連續近似暫存器設計……………………………-47-
3.3 類比電路分析與討論………………………………………..-57-
3.3.1 具電荷回收功能數位類比轉換器分析與設計………-57-
3.3.1.1 傳統電荷能量計算………………..……………-58-
3.3.1.2 本論文電荷回收技術分析…………..…………-61-
3.3.2 比較器電路設計與分析………………………………-67-
3.3.2.1 多級偏移電壓抵消電路………………………..-67-
3.2.2.2 一伏特全擺幅輸入低功率單級預先放大器…..-68-
3.3.3 互補式信號產生器電路設計 ………………………..-73-
第四章 電路模擬與結果比較……………………………………….-76-
4.1 數位類比轉換器模擬 ………………………………………-76-
4.2 比較器電路模擬 ……………………………………………-79-
4.2.1 單級預先放大器電路模擬……………………………-79-
4.2.2 比較器模擬 …………………………………………..-83-
4.3 互補式信號產生器電路模擬………………………………..-88-
4.4 連續近似類比數位轉換器特性模擬………………………..-90-
4.4.1 一般特性模擬…………………………………………-90-
4.4.2 ADC電路靜態特性DNL與INL模擬………………..-93-
4.4.3 ADC電路動態特性模擬………………………………-96-
4.4.4 ADC電路使用在生醫訊號中模擬與功率比較………-98-
4.5 討論與比較………………...……………………………….-100-
第五章 電路佈局與測試考量……………………………………...-102-
5.1 ADC電路佈局考量…………………………………………-102-
5.1.1 DAC電路佈局考量…..………………………………-104-
5.1.2 比較器佈局考量……………………………………..-107-
5.1.3類比訊號源保護考量………………………………...-110-
5.1.4 CSG電路佈局考量…………………………………..-111-
5.1.5 ADC佈局完成說明與晶片封裝考量………………..-112-
5.2 ADC電路測試與量測方式…………………………………-116-
5.2.1雙向埠控制測試觀察DAC參考電壓電路……………-116-
5.2.2 ADC電路量測方法…………………………………..-119-
第六章 結論………………………………………………………...-122-
參考文獻…………………………………………………………….-124-
[1]許哲豪, “12-bit Fully Differential Switched Capacitor Non- calibrating Successive Approximation ADC Using Single Reference Voltage,” 國立成功大學電機工程研究所碩士論文, Aug. 2003.
[2]D. A. Johns, and K. Martin, “Analog Integrated Circuit Design”, Wiley-IEEE Press, Nov. 1994
[3]W. J. Tompkins, “Biomedical Digital Signal Processing”, Prentice-Hall International, 1993
[4]J. Park, H. J. Park, J. W. Kim, S. Seo, and P. chung, “A 1mW 10-bit 500KSPS SAR A/D Converter,” IEEE International Symposium on Circuit and Systems , Vol. 5, May 2000, pp. 581-584
[5]K. S. Tan et al. ”Error correction techniques for high-performance differential A/D converters,” IEEE Journal of Solid-State Circuits, Vol.25, No. 6, Dec. 1990, pp.1318-1327
[6]B. Razzvi, “Principles of Data Conversion System Design”, Wiley-IEEE Press, Nov. 1994
[7]P. E. Allen, and D. R. Holberg, “CMOS Analog Circuit Design”, 2nd Edition, OXFORD University Press, 2002
[8]D. J. Allstot, “A Precision Variable Supply CMOS Comparator,” IEEE Journal of Solid-State Circuits, Vol.17, No. 6, Dec. 1982, pp.1080-1087
[9]B. Razzvi, B. A. Wooley, “Design Techniques for High-Speed High-Resolution Comparators,” IEEE Journal of Solid-State Circuits, Vol.27, No. 12, Dec. 1992, pp.1916-1926
[10]J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-Bit 5-Msample/s CMOS Two-Step Flash ADC,” IEEE Journal of Solid-State Circuits, Vol. 24, No. 2, Apr. 1989, pp. 241-249
[11]L. H. C. Ferreira, T. C. Pimenta and R.L. Moreno, “CMOS implementation of precise sample and hold circuit with self-correction of the offset voltage,” IEE proceeding of Circuit and Devices systems, Vol. 152, No. 5, Oct 2005, pp. 451-455
[12]L.H.C. Ferreira, R.L. Moreno, T.C. Pimenta, C.A.R. Filho,“An Offset Self-Correction Sample and Hold Circuit for Precise Applications in Low Voltage CMOS,” IEEE proceeding of symposium Integrated Circuits and Systems Design, Sept 2005, pp.243-246
[13]T. Yoshida, M. Akagi, M. Sasaki and A. Iwata, “A 1V supply successive approximation ADC with rail-to-rail input voltage rage,” IEEE International Symposium on Circuit and Systems, Vol. 1, May. 2005, pp.192-195
[14]C. J. Huang and H. Y. Huang, “A Low-Voltage CMOS Rail-to Rail Operational Amplifier Using Double P-Channel Differential Input Pairs,” IEEE. International Symposium on Circuits and Systems, Vol.1, May 2004, pp.673-676
[15]H. C. Chow, B.W. Chen, H. C. Chen, W. S. Feng, “A 1.8V,0.3mW,10-bit SA-ADC with New Self-timed Timing Control for Biomedical Applications,” IEEE International Symposium on Circuits and Systems, Vol.1, May 2005, pp. 736-739
[16]C. S. Lin, B.D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE Journal of Solid States Circuits, Vol. 38, No. 1, pp. 54-62, Jan 2003
[17]K. D. Sadeghipour, K. Hadidi, A. Khoei, “A New Architecture for Area and Power Efficient, High Conversion Rate Successive Approximation ADCs,” Northeast Workshop on Circuits and Systems, June 2004, pp253-256
[18]G. Promitzer, “12-bit Low-Power Differential Switch Capacitor Non-Calibrating Successive Approximation ADC with 1MS/s”, IEEE Journal on. Solid-State Circuits, Vol.35, July 2001, pp. 1138-1143
[19]B.P. Ginsburg and A.P. Chandrakasan, “An Energy-Efficent Charge Recycling Approach for a SAR Converter With Capacitive DAC,” IEEE. International Symposium on Circuit and Systems, Vol. 1, May 2005, pp.184-187
[20]Philips Research Laboratories, “Integrated Analog to Digital And Digital to Analog Converters”, 1st Edition 1994
[21]L.S.Y.Wong, S. Hossain, A. Walker, “Leakage Current Cancellation Technique for Low Power Switched-Capacitor Circuits,” International Symposium on Low Power Electronics and Design, Aug 2001, pp. 310-315
[22]T. Lehmann., M. Cassia., ” 1-V Power Supply CMOS Cascode Amplifier ,” IEEE Journal of Solid States Circuits, Vol. 36, No. 7, July 2001, pp. 1082-1086
[23]S. Mortezapour, E.K.F. Lee, “A 1-V ,8-Bits Successive Approximation ADC in Standard CMOS Process,” IEEE Journal of Solid State Circuits, Vol. 35, No. 4 , April, 2000, pp. 642-646
[24]J. Sauerbrey, D. S. Landsiedel., R. Thewes, ”A 0.5V 1-uW Successive Approximation ADC,” IEEE Journal of Solid States Circuits, Vol. 38, No. 7, July 2003, pp.1261-1265
[25].國家晶片系統中心” Nyquist -Rate A/D Converter Design,” July 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊