跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/23 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張宮華
研究生(外文):Kung-Hua Chang
論文名稱:非同向性材料介電常數之新量測法
論文名稱(外文):A New Technique of Determining the Dielectric Constants of Anisotropic Materials
指導教授:鄭瑞清
指導教授(外文):Jui-Ching Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:122
中文關鍵詞:非同向性介電常數環形共振器
外文關鍵詞:anisotropicdielectric constantring resonator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文主要目的為量測微波材料非同向性的性質,以既有的微帶線環形共振器來量測材質垂直方向介電常數,並提出以共平面波導饋入式槽孔環形共振器此一新型方式進行水平方向介電常數的量測,利用此兩種架構的模擬結果與實做比較,藉此得到FR4及25N分別在5.8 GHz與10 GHz的非同向性介電常數,而量測結果大部分都能符合規格表的誤差範圍之內。
再則以傳統的矩形波導管為第二種量測方式,探討X-band頻帶(8.2-12.4 GHz)範圍內材料導磁係數、介電常數與損耗正切等的量測方法,並配合TRL校正程序,同樣將材料分成水平方向與垂直方向進行量測,待測物體放置於夾具中,由這一段介質不連續面所產生之S參數,推出與介電常數的關係,從而求得數值。量測結果雖然因材料製作不甚完美而有些許誤差,不過其數據亦能提供我們對於新型量測法的參考依據。
In this thesis, we investigate a new technique for measuring the anisotropic characteristics of FR4 and 25N substrates at microwave frequency. Microstrip ring resonator is introduced to measure vertical dielectric constant first. Then, a new approach for measuring the horizontal dielectric constant of anisotropic materials by means of a CPW-fed slotline ring resonator is presented. By comparing the difference between simulation and measurement results, we can conjecture the anisotropic permittivity at 5.8 GHz and 10 GHz. The simulation results are within the error range according to the specifications.
In order to compare with the proposed technique, a waveguide technique for measuring dielectric constants is applied. This method can offers accurate values of complex dielectric constants and permeability. The substrates can be stacked horizontally or vertically in the waveguide to measure anisotropic characteristics. The measured results are not smoth which might be because of the imperfect preparation of the samples. However, the information still can serve as a reference for the proposed new technique.
第一章 緒論
1.1 研究背景與動機 1
1.2 材料的介電性質 2
1.2.1 非同向性材料 5
1.3 介電係數的量測 6
1.4 研究方法 10
第二章 環形共振器原理
2.1 概述 15
2.2 量測概念 16
2.3 微帶線環形共振器基本原理 17
2.3.1 不連續微帶線的間隙耦合 18
2.3.2 曲率效應 20
2.3.3 環型共振器的損耗 22
2.3.4 環形共振器的共振條件 24
2.4 環型共振器TRL校正方法 27
第三章 環形共振器模擬與介電常數驗證
3.1 簡介 37
3.2 模擬軟體環境設定 37
3.3 模擬與量測結果 39
3.3.1 FR4非同向性量測 39
3.3.2 25N非同向性量測 48
3.3.3 CuClad非同向性量測 55
3.3.4 誤差探討 58
3.3.5 結果與討論 59
3.4 波導管量測技術 60
3.4.1 系統建置與校正 61
3.4.2 公式推導 62
3.4.3 量測結果 70
3.4.4 結果與討論 74
3.5 結論 74
第四章 結論 113
參考文獻 115
附錄 120
[1] 許正興,「微波介電材料之備製與應用之研究」,成功大學電機工程研究所,博士論文,民國91年。
[2] David K. Cheng, Field and Wave Electromagnetics,2nd ed., Addison-Wesley, 1992
[3] William D. Callister, Jr., Materials Science and Engineering An Introduction, 5th ed., John Wiley& Sons, Inc., 2000.
[4] Lawrence H. Van Vlack, Materials for Engineering, Addison-Wesley, Inc, 1982.
[5] J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 4th ed., Stanley Thornes Ltd, 1999.
[6] T. C. Edwards and M. B. Steer, Foundations of Interconnect and Microstrip Design, 3rd ed., John Wiley & Sons, 2000.
[7] H. E. Bussey, “Measurement of RF properties of materials a survey ,” Proceedings of The IEEE, Vol. 55, Issue 6, pp.1046-1053, June 1967
[8] 楊弘倫,「時域反射儀應用於土壤含水量及地下水監測技術」,中央大學土木工程研究所,碩士論文,民國93年。
[9] S. Hoshina and Y. Kanai, “A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement,” Magnetics, IEEE Transactions on vol. 37, Issue 5, pp. 3310-3314, Sept. 2001
[10] Agilent basics of measuring the dielectric properties of materials, http://www.agilent.com/
[11] Arthur von Hippel, Dielectric Materials and Applications, Artech House Publishers, 1995
[12] P. Troughton, “Measurement techniques in microstrip,” Electron. Lett., vol.5, pp.25-26, Janu. 1969
[13] P. A. Bernard and J. M. Gautray, “ Measurement of dielectric constant using a microstrip ring resonator,” Microwave Theory and Techniques, IEEE Transactions on vol. 39, Issue 3, pp.592-595 Mar. 1991
[14] J. M. Heinola, P. Silventoinen, K. Latti, M. Kettunen and J. P. Strom, “Determination of dielectric constant and dissipation factor of a printed circuit board material using a microstrip ring resonator structure,” Microwaves, Radar and Wireless Communications, 2004. MIKON-2004. 15th International Conference on vol. 1, 17-19, pp. 202-205, May 2004
[15] K. Kawano and H. Tomimuro, “Slot ring resonator and dispersion measurement on slot lines,” Electron. Lett., vol. 17, no. 24, pp. 916-917, Nove. 1981
[16] M. Maeda, “An analysis of a gap in microstrip transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. 20, pp. 390-396, June 1972
[17] P. Benedek and P. Silvester, “Equivalent capacitances for microstrip gaps and steps,” IEEE Trans. on Microwave Theory and Techniques, vol. 20, pp. 729-733, Nov. 1972
[18] T. Koryu Ishii, Handbook of Microwave Technology, Academic Press, Inc. 1995
[19] R. Garg and I. J. Bahl, Microstrip discontinuities, Int. J. Electron., Vol. 45, pp. 81-87, 1978
[20] E. Hammerstad, “Computer-aided design of microstrip couplers with accurate discontinuity models,” IEEE MTT-S International Microwave Symposium Digest, pp. 54-56, June 1981
[21] I. Wolff and N. Knoppik, “Microstrip ring resonator and dispersion measurement on microstrip lines,” Electronics Lett., vol. 7, No. 26, pp. 779-781 30th Dec. 1971
[22] R. P. Owens, “Curvature effect in microstrip ring resonators,” Electronics Lett., vol. 12, pp. 356-357 8th July 1976
[23] G. Kompa and R. Mehran, “Planar-waveguide model for calculating microstrip components,” Electronics. Lett., vol. 11, pp. 459-460, Sept. 1975
[24] R. A. Pucel, D. J. Masse and C. P. Hartwig, “Losses in microstrip,” IEEE Trans. Microwave Theory Tech., vol. 16, pp. 342-350, June 1968
[25] A. Gopinath, “Maximum Q-factor of microstrip resonators,” IEEE Transactions on Microwave Theory Tech., vol. 29, pp. 128-131, Feb. 1981
[26] R. K. Haffmann, Handbook of microwave integrated circuits, Norwood, MA: Artech House, 1987. Chap11, pp. 311
[27] David M. Pozar, Microwave Engineering, 3rd ed., John Wiley& Sons, Inc., 2005
[28] Zeland Software Inc., “IE3D simulator”, January, 1997
[29] Agilent Technologies, Inc., “Advanced Design System”, 2003
[30] J. A. Navarro and K. Chang, “Varactor-tunable uniplanar ring resonator,” IEEE Trans. Microwave Theory Tech., vol 41, pp. 760-766, May 1993
[31] Agilent Network Analysis Applying the 8510 TRL Calibration for Non-Coaxial measurements, Agilent Technologies.
[32] HFSS and Optimetrics, Version 9.2, 2004 (Ansoft Corp., USA)
[33] 黃俊仁,「介電係數量測技術之研究」,國立中央大學,碩士論文,民國91年。
[34] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, 2rd ed., John Wiley& Sons, Inc., 1998.
[35] K. C. Gupta, Ramesh Garg, Inder Bahl and Prakash Bhartia, Microstrip Lines and Slotlines, 2nd ed., Artech House, 1996, ch. 5, 7
[36] M. H. Yeh, P. Hsu and J. F. Kiang, ”Analysis of a CPW-fed slot ring antenna,” Microwave Conference, APMC 2001,Asia-Pacific, vol. 3, pp. 1267-1270, Dec. 2001
[37] A. E. Fathy, V. A. Pendrick, B. D. Geller, S. M. Perlow, E. S. Tormey and A. Parbhu, “An innovative semianalytical technique for ceramic evaluation at microwave frequencies,” IEEE Trans. Microwave Theory Tech., vol 50, pp. 2247-2252, Oct. 2002
[38] A. M. Nicolson and G. F. Ross, “Measurement of the instrinic properties of materials by time domain techniques,” IEEE Trans. on Instrument and Measurement, vol. 19, pp. 377-382, Nov. 1970
[39] W.B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proceedings of the IEEE vol. 62, pp.33-36, Jan. 1974.
[40] Constantine A. Balanis, Advanced Engineering Electromagnetics, John Wiley& Sons, Inc., 1989
[41] A. Boughriet, C. Legrand, and A. Chspoton, “Noniterative Stable Transmission/Reflection Method for Low-Loss Material Complex Permittivity Determination,” Microwave Theory and Techniques, IEEE Transactions on vol. 45, NO.1 pp.52-57, Jan. 1997.
[42] 戴裕國,「微波頻帶之介質常數量測」,國立台灣大學,碩士論文,民國79年。
[43] J. B. Jarvis, E. J. Vanzura and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/ reflection method,” Microwave Theory and Techniques, IEEE Transactions on vol. 38, NO. 8, Aug. 1990.
[44] Agilent network analysis applying the 8510 TRL calibration for non-coaxial measurements, http://www.agilent.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導系教育心理學報,27 期,頁36-63。
2. 林美和(1987)。數學障礙兒童學習問題之研究,台灣師範大學社會教育學刊,16,頁46-76。
3. 林秀錦(1994)。學習障礙的鑑定與批判。國民教育,第34期,40-42 頁。
4. 林邦傑(1981)。國中及高中學生具體運思、形式運思與傳統智力之研究。中華心理學刊,十二卷,第二期,33-49 頁。
5. 邱上真、詹士宜、王惠川、吳建志(1995)。解題歷程導向教學對國小四年級數學科低成就學生解題表現之成效研究。特殊教育與復健學報,4,75-108。
6. 吳武雄(1981)。 國中學生認知發展與科學及數學課程學習之相關研究。教育學院學報,第六期,257-277 頁。
7. 吳貞祥(1990)。幼兒數概念的發展。國教月刊,36(9-10),頁13 -17。
8. 林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,第4期,頁295-347。
9. 孫扶志(1996):認知解題策略對國小數學低成就學童文字題解題能力之實驗研究。測驗統計年刊,第四輯,頁71-124。
10. 陳東陞(1993)。低成就學生的診斷與輔導,研習資訊,9(3),頁17-21。
11. 陳麗玲(1993)。國小數學科問題解決策略。研習資訊,10(9),頁53-56。
12. 張景媛(1994)。 數學文字題錯誤概念分析及學生建構數學概念的研究。 師範大學教育心理學報, 27 期,頁175-200。
13. 甯自強(1995)。單位量的變換(二)--正整數乘除運思的融合。教師之友,36(5),頁35-44。
14. 楊榮祥(1992)。解釋研究法在科學教育研究上的運用。科學發展月刊。第20卷第五期,539-547頁。
15. 劉潔玲(2001)。學業成就不足與學習動機問題之研究。教育研究資訊,9(3),頁86-105。