跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊承翰
研究生(外文):Cheng-han, Chuang
論文名稱:奈米纖維膜在軟骨組織工程上的應用
論文名稱(外文):The application of nano-fibrous membrane on articular cartilage tissue engineering
指導教授:陳志平陳志平引用關係
指導教授(外文):Jyh-Ping, Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:生化與生醫工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:71
中文關鍵詞:軟骨組織工程奈米纖維膜電紡織技術軟骨細胞
外文關鍵詞:cartilage tissue engineeringnano-fibrous membraneelectrospinningchondrocytes and meniscus cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是欲以電紡織法所製得的奈米纖維膜應用在軟骨組織工程中,發展出一套能用於軟骨組織修復的方法。在實驗設計上我們是希望能以有利於細胞分裂生長的成分混合在製備奈米纖維膜的高分子溶液中,而直接得到一個具有高表面積均勻的混有各種能促進細胞生長的成分。
在不同高分子薄膜上培養軟骨細胞的實驗中,我們初步發現材料成分中含有PEO(polyethylene oxide)時,會造成細胞無法很好在支架上的貼附生長。而在奈米纖維薄膜上培養軟骨細胞時,我們也發現此一奈米纖維結構也可能會使得細胞貼附的不穩固而造成細胞無法在膜上正常的生長。
當奈米纖維膜有膠原蛋白吸附修飾後,軟骨細胞在膜上的貼附生長就有比較良好的效果,貼附效率能提升5% ~ 27%。
綜合以上研究結果,我們發現似乎直接將膠原蛋白混入電紡織成膜的製程中比較沒有明顯的效果,仍需在製成膜後進一步地在膜表面進行修飾才能有個良好的效果。
The aim of this research is to fabricate nano-fibrous membranes from electrospinning for cartilage tissue engineering. Nanofibers were produced by electrospinning of a polymer solution of chitosan, collagen and polyethylene oxide (PEO) and crosslinked by glutaraldehyde vapor. Chondrocytes were isolated from rabbit articular cartilage and seeded on the nanofibrous scaffolds.

By seeding chondrocytes and meniscus cells on film surfaces containing different combinations of collagen, chitosan, and PEO, we found that cells did not attach and proliferate well to films containing PEO. When cells were cultured on nano-fibrous membranes, the nano-fibrous structure may lead to weak cell attachment and poor proliferation.

After type I collagen modification, the nano-fibrous membrane becomes better for cell attachment. The cells attachment efficiency can be improved by 5 ~ 27% by growing the cells on the collagen modified nano-fibrous membrane.
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1目前關節的治療修復方式 5
2.1.1 顯微骨折手術 5
2.1.2 異體移植 7
2.1.3 自體移植 9
2.1.4 自體軟骨細胞移植 11
2.1.5 組織工程技術 12
2.2 電紡織技術 18
第三章 實驗設備、藥品及方法 20
3.1 實驗設備 20
3.2 實驗藥品 22
3.3 實驗方法 24
3.3.1 初代軟骨細胞之取得 24
3.3.2 繼代培養 25
3.3.3 軟骨細胞數測定 26
3.3.4 24孔細胞培養盤預處理 27
3.3.5 軟骨細胞MTT測定 28
3.3.6 細胞外間質-葡萄糖胺聚醣(GAG)分析 30
3.3.7掃描式電子顯微鏡(SEM)樣品前處理 32
3.3.8奈米纖維膜的交聯 33
3.3.9奈米纖維膜及高分子塗佈薄膜表面的修飾處理 35
第四章 初步結果與討論 36
4.1 初代軟骨細胞之取得 36
4.2 利用光學顯微鏡觀察軟骨細胞活性及其型態 40
4.3 細胞培養盤(TCPS)平面培養細胞活性測試 42
4.4軟骨細胞在奈米纖維膜上培養的活性測試 44
4.5 軟骨細胞在高分子薄膜(FILM)上生長情形 47
4.6軟骨細胞在奈米纖維膜及高分子薄膜上的生長與分泌測試 51
4.7軟骨細胞在第一型膠原蛋白(TYPE I COLLAGEN)修飾後的奈米纖維膜及高分子薄膜上之生長測試 51
第五章 結論 68
第六章 參考文獻 70
1.Makarand V. Risbud and Sittinger M. Tissue engineering: advances in vitro cartilage generation. Trends in Biotechnology 20(8): 351-356 (2002).
2.Joseph J. Lienert, et al, Microfracture techniques in hip arthroscopy. Op Tech Orthop 15:267-272 (2005).
3.D.L. Johnson, Arthroscopically assisted technique for meniscal reconstruction using fresh frozen allograft. Operative Techniques in Orthopaedics 5 (1) (January): 88-94 (1995).
4.D.A. Dennis, The structural allograft composite in Revision total knee arthroplasty. The Journal of Arthroplasty 17(4) Suppl. 1 (2002).
5.http://www.afachen.com.tw/np/afachen.nsf/Index
6.Hangody L., et al, Mosaicplasty for the treatment of articular defects of the knee and ankle. Clinical Orthopaedics & Related Research. 391 Suppl:S328-36 (2001).
7.Hangody L., et al, Osteochondral plugs: autogenous osteochondral mosaicplasty for the treatment of focal chondral and osteochondral articular defects. Operative Techniques in Orthopaedics 7(4) (October): 312-322 (1997).
8.J. S. Huntley, et al, Cutting-edge design to improve cell viability in osteochondral grafts. OsteoArthritis and Cartilage 13: 665-671 (2005).
9.Scott D. Gillogly, Autologous chondrocyte implantation: complex defects and combined procedures. Operative Techniques in Sports Medicine 10(3) (July): 120- 128 (2002).
10.Kenneth R. Zaslav, Autologous chondrocyte implantation operative technique for contained femoral defects. Operative Techniques in Sports Medicine 10(3) (July): 114-119 (2002).
11.L. E. Freed, R. Langer, I. Martin, N. R. Pellis, G. Vunjak-Novakovic, Tissue engineering of cartilage in space. proc Natl Acad Sci 94 :13885-13890 (1997).
12.P. Brun, G. Abatangelo, M. Radice, V. Zacchi, D. Guidolin, D. D. Gordini, R. Cortivo, Chondrocyte aggregation and reorganization into three-dimensional scaffolds, J Biomed Mater Res 46: 337-346 (1999).
13.R. P. Silverman, L. Bonasser, D. Passaretti, M. A. Randolph, M. J. Yaremchuk, Adhesion of Tissue-Engineered Cartilage to Native Cartilage, Plast Reconstr Surg 105: 1393 (2000).

14.R. P. Lanza, R. Langer, J. Vacanti, Principles of tissue engineering 2nd: 671-682 (1999).
15.W.J. Li et al., Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26: 5158-5166 (2005).
16.Joint structure and function : a comprehensive analysis 3rd ed, PK Levangie and CC Norkin, FA Davis: 49-83 (2001).
17.J.K. Francis Suh, H.W.T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue ingineering: a review. Biomaterials 21: 2589-2598 (2000).
18.J. J. Grzesiak , M. D. Pierschbacher, M. F. Amodeo, T. I. Malaney, J. R. Glass, Enhancement of cell interactions with collagen/ glycosaminoglycan matrices by RGD derivatization, Biomaterials 18: 1625-1632 (1997).
19.B. K. Mann, A. T. Tsai, T. Scott-Bruden, J. L. West, Modification of surfaces with cell adhesion peptides alters ectracellualr matrix deposition, Biomaterials 20: 2281-2286 (1999).
20.L. W. Jennifer and Jeffry A. Hubbell, Chapter 5 Bioactive Polymers, p. 86, Synthetic Biodegradable Polymer Scaffolds, Birkhauser, 1997
21.A. Formhals, US Patent 1-975-504 (1934).
22.S. R. Bhattarai et al. Novel biodegradable electrospun membrane: scaffold for tissue engineering, Biomaterial 25: 2595-2602 (2004).
23.Y.L. Cui et al., Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondricytes in vitro. Biomaterial 24: 3859-3868 (2003).
24.B. O. Enobakhare, D. L. Bader, D. A. Lee, Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture by use of 1,9-dimethylmethylene blue, Anal Biochem 243: 189-191 (1996).
25.L. Ma et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterial 24: 4833-4841 (2003).
26.Steadman JR, Rodkey WG, Briggs KK, et al: The microfracture: Microfracture technique for full-thickness chondral defects: Technique and clinical results. Op Tech Orthop 7:300-304 (1997).
27.Mould AP, Askari JA, Humphries MJ. Molecular basis of ligand recoginition by intergrin α5β1. J Biol Chem 275: 20324-36 (2000).
28.關節修復網 www.guanjie.org
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top