跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林成文
研究生(外文):Chen-Wen Lin
論文名稱:下肢骨折手術骨髓內釘定位導引及術後臥床期動力輔助式上肢軀幹運動復健系統開發與臨床驗證
論文名稱(外文):Design and Clinical Assessment of a Positioning System for Interlocking Nail Screws and a Postsurgery Power-assisted Motor Control Rehabilitation System
指導教授:李明義李明義引用關係
指導教授(外文):Ming-Yih Lee
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:123
中文關鍵詞:骨髓內釘骨折長期臥床
外文關鍵詞:interlocking nailfracturebed rest
相關次數:
  • 被引用被引用:0
  • 點閱點閱:888
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臨床上股骨或脛骨粉碎性骨折(comminuted fracture)與節斷性骨折(segmental fracture)病患,通常都需接受復位手術。然而,目前醫師在進行股骨或脛骨骨折復位手術時,多採用互鎖式骨髓內釘固定法(interlocking nail fixation),使用此種互鎖式骨髓內釘進行手術時,醫師須先將骨髓內釘打進股骨或脛骨骨髓內腔,接著醫師必須在骨髓內釘打入骨髓內腔後,正確地判定骨髓內釘近端與遠端固定孔方位,才能加裝固定螺釘確保骨髓內釘於骨髓腔內不致移動及旋轉,方能加速骨折癒合,此一步驟便成為骨折復位手術成功與否之關鍵。根據臨床醫師指出骨髓內釘近端固定孔由於係與曝露在外之手術器械把手連結,很容易確認方位,但是遠端固定孔卻因深藏在骨髓腔內,無法以肉眼由體外得知正確方位。另外由於股骨骨髓內釘遠端外形彎曲及股骨骨髓內腔緻密骨密度高,所以股骨骨髓內釘在插入股骨骨髓內腔時,可能會造成少許變形,更造成定位工作之挑戰與困難度。目前手術醫師尋找遠端固定孔方位的方法有下列三種:(1)徒手試誤法操作(free hand trial-and-error method);(2)透過移動式 X 光機(C-Arm)輔助定位;(3)使用瞄準器(target aiming)機械定位。然而利用徒手試誤法操作常會因尋找不到遠端固定孔而需花費較長時間。移動式 X光機與瞄準器機械定位其缺點是造成醫護人員曝露在高輻射環境中,因此對一位常需進行此類手術的醫師而言,即使採取了相關的防護措施,長時間所吸收的輻射劑量亦頗為可觀,嚴重地危害到醫師的健康。因此如何設計一套能方便醫師在復位手術過程進行遠端固定孔之定位導引裝置,將可提昇復位手術品質、縮減手術時間。
另外,病患在復位手術後因需等待患部骨骼癒合後才能下床活動而通常須待在病床上休養二至五週,臥床期間病患都必須仰賴醫護人員或家屬協助反覆翻身,以避免產生臥床合併症(如沈積性肺炎、肺栓塞、壓瘡、心肺功能障礙、肌肉萎縮等)。根據Dartmouth-Hitchcock 醫學中心Mahler研究學者指出,有效避免臥床合併症之方法是在臥床期間應該採用上半身軀幹與下肢運動等兩項復健訓練。其中上半身軀幹運動復健方式有手臂舉重與仰臥起坐訓練等兩種,係藉由上臂與腹部等非呼吸肌肉訓練(nonrespiratory muscle maneuvers),增強橫隔膜收縮力量配合身體姿勢改變,提昇心肺功能並達到分散皮膚表面壓力之效果。另外,根據調查有效地治療長期臥床所引發的沈積性肺炎、肺栓塞、壓瘡等合併症,可採用kinetic therapy的理論觀念,讓病患在臥床時期躺在旋轉床(rotation bed)上,避免上述合併症發生。因此設計一套上半身軀幹運動復健與旋轉床復健訓練,將是解決臨床上臥床合併症之一項策略。爰此,本研究主要係以下肢骨折病患治療需求為核心,分別針對骨折手術中改善骨髓內釘遠端固定孔定位導引以及復位手術後避免臥床合併症等問題,分別開發「骨髓內釘遠端骨螺釘定位導引系統」及「術後臥床期動力輔助式上肢軀幹運動復健設備」等,以突破骨折病患手術中/後治療之瓶頸。
本研究工作分為「骨髓內釘遠端骨螺釘定位導引系統」開發、「骨髓內釘遠端骨螺釘定位導引系統」臨床驗證及「術後臥床期動力輔助式上肢軀幹運動復健設備」開發等三部分。本研究第一部份係自行設計開發一套「骨髓內釘遠端骨螺釘定位導引系統」,工作項目包括骨髓內釘定位問題界定、利用品質機能展開技術進行使用需求與工程需求分析、導引器械工程規格訂定、使用3D繪圖軟體Solid Works建構3D 立體模型、利用運動模擬軟體Working Model進行機構動態模擬分析、實體雛形加工製作組裝等。至於軟體開發工作主要係利用LabVIEW 7.1開發影像處理視窗介面、影像分析視窗介面、影像量測視窗介面等模組,模組功能包括影像處理視窗介面分為亮度處理與二值化處理、影像分析視窗介面分為物件標記與物件圓心計算、影像量測視窗介面分為尺寸校正、距離量測、角度量測,最後進行功能測試。本研究第二部分係進行「骨髓內釘遠端骨螺釘定位導引系統」臨床驗證,工作項目包括以脛骨進行脛骨骨髓內釘遠端骨螺釘定位,分別使用音頻回饋式骨髓內釘遠端骨螺釘定位導引系統與骨髓內釘定位導引器械兩種定位裝置,分析比較兩種方式在定位誤差距離、遠端骨螺釘定位時間、整體手術時間之優劣。另外本研究也進行股骨骨髓內釘在打入股骨後,拍攝股骨骨髓內釘於股骨內的X光片,探討股骨骨髓內釘遠端孔洞位置與角度偏移量。本研究第三部分係自行設計開發一套「術後臥床期動力輔助式上肢軀幹運動復健設備」,研究工作包括臥床期上半身軀幹運動需求調查、上半身軀幹運動復健設備功能需求、使用3D繪圖軟體Solid Works建構3D 立體模型及機構元件設計、利用運動模擬軟體Working Model進行機構動態模擬、規劃動力輔助支架壓力量測荷重元(load cell)、進行實體雛形加工製作、電路控制與組裝測試。
本研究第一部份已完成骨髓內釘遠端骨螺釘定位導引器械雛形設計,其機構模組包含正向夾持滑桿固定機構與夾持拴鎖機構,系統程式模組包含影像處理程式模組、影像分析程式模組、影像量測程式模組。為了確認本研究所開發之「機械式定位導引系統」與本實驗室學長所開發「音頻回饋式定位導引系統」對骨髓內釘遠端骨螺釘孔洞定位之功能,本研究也使用一組人造股骨(large left femur model #3306, Pacific Research Laboratory Vashon Island, WA., U.S.A.),進行實驗室操作驗證,實驗結果驗證所使用之兩種定位導引系統均能完成骨髓內釘遠端孔洞定位之功能驗證。另外,本研究也與新店慈濟醫院合作,進行骨髓內釘遠端孔洞定位導引系統臨床驗證。實驗分為股骨與脛骨骨髓內釘定位導引兩項。其中脛骨骨髓內釘遠端孔洞定位臨床驗證測試,實驗係採用捐贈者未破壞的脛骨(屍骨)一組,由醫師使用本實驗室學長所開發之音頻回饋式定位導引系統與本研究所開發之機械式定位導引系統,分別進行四次骨髓內釘遠端骨螺釘定位手術,並記錄定位誤差距離、遠端骨螺釘定位時間、整體手術時間。實驗結果發現,音頻回饋式定位導引系統,平均定位誤差為3.1mm、遠端骨螺釘定位平均花費時間為384.25秒、整體骨折復位手術時間為706秒;本研究所開發之機械式骨髓內釘定位導引系統之平均定位誤差為1.41mm、遠端骨螺釘定位平均花費時間為331秒、整體骨折復位手術時間為672.75秒。由實驗驗證本研究所開發之定位導引器械較音頻式定位導引系統之定位誤差減少55%。至於股骨骨髓內釘變形量測臨床驗證,係採用屍骨進行單次臨床測試,評估骨髓內釘打入股骨後之變形程度,本研究亦由醫師進行股骨骨髓內釘定位手術,並拍攝股骨骨髓內釘於股骨內的X光片,量測股骨骨髓內釘遠端孔洞第一孔洞變形偏移量為3mm、遠端孔洞第二孔洞變形偏移量為2.3mm以及角度旋轉量為2.9度。另外,本研究也完成了術後臥床期動力輔助式上肢軀幹運動復健設備雛形設計,其機構模組包含床板坐臥姿勢變換機構、床板左右翻轉機構,電路控制模組包含床板坐臥姿勢變換模組、床板左右翻轉模組,本研究在設備組裝後也經由功能測試評估,床板坐臥姿變化機構在無負載與60公斤人體負載下,其坐臥姿勢變換時間分別為70.6秒和71.2秒,床板左右翻轉機構在無負載與60公斤人體負載下,其左右翻轉運動時間分別為28.2秒和30秒。
綜合以上所述,本研究所開發完成之骨髓內釘遠端骨螺釘定位導引系統,期望能有效輔助醫師進行骨髓內釘遠端骨螺釘定位,以期縮短手術時間、減少醫師由X光機輔助定位所造成之輻射傷害等目標。另外本研究所開發完成之術後臥床期動力輔助式上肢軀幹運動復健設備,期望能在手術恢復期幫助下肢運動障礙病患不需下床就能進行運動訓練,避免衍生沈積性肺炎、肺栓塞、壓瘡、心肺功能障礙、肌肉萎縮等臥床合併症。
Femoral or tibial comminuted fractures or segmental fractures usually requires surgical treatment, and the treatment of choice is usually the intramedullary interlocking nail fixation. During the surgical procedures, the surgeon would first place the nail into the medullary canal, and then accurately identifying the position of the proximal and distal locking screw holes, before placement of the locking screws. The function of locking screws is to avoid rotation and displacement of the nail within the bone, in order to improve bone healing, and avoid nonunion or malunion of the fracture, and assurance of their placement is mandatory for a successful surgery. According to the orthopedic surgeons, the proximal locking screws can easily be applied via guiding tunnels located on the handle that is connected to the nail during insertion; however, there is no proper guide for localization of distal locking screws since once the nail is inserted, and the exact position of the screws is patient dependent. Not all the patient uses the same length of nail, and different degree of curvature may be produced onto the nail depending on the bony contour of each patient, especially at the femur; therefore, it is a challenge for the surgeon in placing the distal locking screws during surgeries.
At present, there are three most common methods for localization of the distal locking screws, 1) free hand trial and error method, 2) fluoroscopic guiding method, and 3) use of the target aiming device. The first method is usually difficult to locate the screw holes in the first trial, and may require a lot of time for such procedure. Fluoroscopic guidance is rather accurate, but it exposes the medical personnel under radiation, and even though there are already protective shields being worn during the surgery, the effect radiation hazard is cumulative, and the dosage may be unacceptably high after long hours of exposure. Considering above mentioned clinical problems, an accurate localization device for the distal screw holes will greatly improve the surgical quality, and diminish surgical time.
Lower limb fracture usually occur in major trauma, and the patient may also be associated with other injuries that requiring prolong bedrest, or causing temporary or permanent bedridden, and during the time of recovery, frequent changing position is mandatory to avoid complications such as pneumonia, pulmonary embolism, decubitus ulcer, cardiopulmonary functional debilitation and muscular atrophy. According Mahler from Dartmouth-Hitchcock medical center, an effective method to avoid complications with prolong bedridden is to perform rehabilitation training of upper trunk and lower limbs, among which, the upper trunk rehabilitation include weight lifting and sit-ups, via upper limb and nonrespiratory muscle maneuvers and postural adjustment to improve the contraction force of the diaphragm, subsequently increase the cardiopulmonary function. Other researches found that kinetic therapy can effectively decrease the incidence of complications, and by placing the patient on the rotation bed can also avoid such complications. Combining the above theories to design a set of rehabilitation motion for upper trunk and rotation bed training is one of the methods for solving complications. Therefore, this research is based on the treatment of patients suffering from lower limb fractures, developing a intramedullary nail distal locking screw guiding system to improve localization of the distal locking screw during surgery, and a postoperative power assisted upper limb and trunk rehabilitation system to avoid complications of prolong bedridden.
The research was divided into three parts, the development of intramedullary nail distal locking screw guiding system, the clinical assessment of the intramedullary nail distal locking screw guiding system, and the postoperative power assisted upper limb and trunk rehabilitation system for bedridden patient. The first part included problem identification of locking screw hole localization, analysis of the user and enginnering demands using quality function deployment (QFD), guiding mechanical engineering specification, 3D modeling with. SolidWorks software, motion analysis with Working Model® software, finite element analysis with CosmosWorks® software for structural analysis of stress and strain, assembly of the device, ect. LabView® 7.1 was used for development of the image process window interphase, image analysis developing interface, image measurement window interface, and the function of modules include brightness, binarization, image analysis interphase for identification of object marking and object center. Image measurement window interphase includes size adjustment, distance measurement, angle measurement, and then the final test. The second part of the study regards assessment of the intramedullary nail distal locking screw navigation system, which includes localization of the distal locking screw positions in tibial intramedullary nail. Two methods, the sound guided method and mechanical guided method, were compared in terms of distance of error, time of navigation. Another part of the research discussed about the deformity of femoral intramedullary nail after insertion. Fluoroscopy images were taken after insertion of nail into cadaveric femoral canal, and the angle and distance of displacement of distal locking screw holes were evaluated. The third part of the study was the development of the postoperative power assisted upper limb and trunk rehabilitation system for bedridden patient. It consisted of investigation on the recommended upper trunk motion in bed ridden patients, the functional requirement for the upper trunk rehabilitation device, creation of 3D models with SolidWorks® software, motion simulation with working model, planning of the load cell measurement, assembly of the device, and test run of the mechanical structure as well as the electrical circuit.
A novel distal locking screw mechanical guide for intramedullary nail was developed, and the mechanical module included upright-clip slippery mechanism and clip-tie mechanism,the system program module consists of image process module, image analysis module, and image measurement module. Cooperation was done with Buddhist Tzu-Chi Taipei General Hospital for assessment of the distal locking screw navigation. A cadaveric femur and tibia was obtained, and four attempts were performed in each bone for the distal locking screw fixation, using previously developed sound guided navigation system, and the distance of error, time of navigation, and the time of surgery were recorded. It resulted that the average accuracy error was 3.1mm, and the average time for navigation was 384.25 seconds, while the average time for surgical fixationwas 706 seconds. On the other hand, the average accuracy error for the mechanical guide was 1.41mm, average time for navigation was 331 seconds, and the average surgical time was 672.75 seconds. From the results, the mechanical guide developed in this research had higher accuracy, and could improve by 55% of error in distance. Regarding the deformation of the femoral intramedullary nail after insertion, the nail was placed into the femoral canal by the orthopedic surgeon as were in a real surgery, and from the X-ray images taken, a displacement of 3mm and 2.3mm for the distal and 2nd distal locking screw hole, and a rotation angle of 2.9o was recorded. Finally, the prototype of a power assisted upper trunk rehabilitation system for the bed ridden was also developed, which included of mechanical module and electronic control module for the postural change from supine to sitting position, and lateral rotation of the bed. Functional assessment was performed, and the time required for changing position from supine to sitting was 70.6 seconds without any weight bearing, and 71.2 seconds with a weight of 60 Kg. The time required for lateral rotation of 60 degrees was 29 seconds with none weight bearing, and 28 seconds bearing a weight of 60Kg.
Combining the above mentioned researches, a navigation system for the distal locking screws of the intramedullary nail was developed, in hope to help the surgeons in the surgery, to decrease surgical time, and to diminish radiation exposure. Furthermore, the postoperative power assisted upper trunk rehabilitation system for the bed ridden was developed, in hope to help the patients suffering from lower limb motor disability to start rehabilitation and motor training in the bed, to avoid complications such as pneumonia, pulmonary embolism, decubitus ulcer, cardiopulmonary disability, and muscular atrophy.
指導教授推薦書 .….………..………………………………..……..…...i
口試委員會審定書 ….…….………………………………..……..…...ii
授權書….………….………………………………………..……..…...iii
誌謝….…………… .…………………………… …………..……..…...iv
中文摘要 ….…………………………………………………..…….…...v
英文摘要 ….…………………………………………………..…….…...x
目錄………. .………….……………………...……..……….……xv
圖目錄 .…………………………………………..………….……...xviii
表目錄……………………………… .…………………..….…....xxiv
第一章 研究背景、動機 1
1.1 研究背景、動機 1
1.2 研究目的 6
1.2.1骨髓內釘遠端骨螺釘定位導引系統開發 …………….7
1.2.2骨髓內釘遠端骨螺釘定位系統臨床驗證 …..…...……7
1.2.3術後臥床期動力輔助式上肢軀幹運動復健設備開發…..7
1.3 論文架構 8
第二章 文獻回顧 9
2.1骨髓內釘遠端骨螺釘定位導引系統開發 9
2.1.1骨髓內釘遠端骨螺釘定位問題相關文獻 9
2.1.2骨髓內釘遠端骨螺釘定位器械專利資料 13
2.1.3骨髓內釘遠端骨螺釘定位導引系統相關文獻 15
2.2術後臥床期動力輔助式上肢軀幹運動復健設備開發 18
2.2.1臥床合併症臨床問題相關文獻 18
2.2.2術後臥床期病患運動訓練相關文獻 21
2.3文獻總結 21
第三章骨髓內釘遠端骨螺釘定位導引系統開發 24
3.1骨髓內釘遠端骨螺釘定位導引器械需求調查 25
3.2骨髓內釘遠端骨螺釘定位導引器械規格訂定 28
3.2.1QFD品質機能展開調查分析 ……………………………..28
3.3概念設計 38
3.4細部設計 41
3.5機構運動模擬 46
3.6雛形製作 51
3.6.1快速原型技術製作 51
3.6.2實體雛形製作 52
3.7骨髓內釘變形量測系統程式模組設計 57
第四章骨髓內釘遠端骨螺釘定位導引系統臨床驗證 ……..…….65
4.1音頻回饋式定位導引系統介紹及操作 65
4.2機械式定位導引系統介紹及操作 71
4.3人造股骨骨髓內釘定位功能驗證 75
4.3.1音頻回饋式定位導引系統功能驗證……….…………...75
4.3.2機械式定位導引系統功能驗證…………………….…...79
4.4屍骨骨髓內釘定位臨床驗證 83
4.4.1脛骨骨髓內釘遠端孔洞定位臨床驗證… .…………...84
4.4.1.1音頻回饋式定位導引系統操作步驟… …...…...84
4.4.1.2機械式定位導引系統操作步驟…….. .……...87
4.4.1.3音頻式與機械式定位導引系統臨床驗證比較…..90
4.4.2股骨骨髓內釘打入股骨後變形量測實驗.……………...91
4.4.3股骨骨髓內釘遠端孔洞定位臨床驗證….…...…….…...97
第五章術後臥床期動力輔助式上肢軀幹運動復健設備 101
5.1臥床期上半身軀幹運動需求調查 101
5.2上半身軀幹運動復健設備功能需求 102
5.3概念設計 103
5.4細部設計 105
5.5機構運動模擬 108
5.6雛形製作………………………………………………………………..…109
5.7電路控制設計模組 114
5.7.1電動缸正反轉之電路設計 115
5.7.2交流馬達正反轉之電路設計 116
5.7.3手動式控制面版設計與開發 117
5.8功能測試 118
第六章 結論及未來研究方向 121
6.1骨髓內釘遠端骨螺釘定位導引系統開發結論 121
6.2骨髓內釘遠端骨螺釘定位系統臨床驗證結論 121
6.3術後臥床期動力輔助式上肢軀幹運動復健設備結論 122
6.4未來研究方向 122
6.4.1骨髓內釘遠端骨螺釘定位導引系統開發 122
6.4.2骨髓內釘遠端骨螺釘定位系統臨床驗證 122
6.4.3術後臥床期動力輔助式上肢軀幹運動復健設備 123
[1] Wan et al.: Transmittance of Non-ionizing Radiation in Human Tissues, J. Chemistry and Photobiology, vol.3, pp. 679-681, 1981.
[2] Anderson LD: The use of plates in the patient with multiple injuries, Orthop Clin North Am 1:151, 1970.
[3] Anderson LD: Compression plate fixation and the effect of different types of internal fixation on fracture healing, AAOS Instr Course Lect 42:3, 1993.
[4] Uhthoff HK, Finnegan M: The effects of metal plates on post-traumatic remodeling and bone mass, J Bone Jiont Surg 65-B: 66, 1983.
[5] Waris P, Peenttinen R, Slatis P, et al: Biochemical changes in bone grafts stabilized with rigid plates. I. Cancellous grafts, Acta Orthop Scand 52:527, 1981.
[6] Waris P, Peenttinen R, Slatis P, et al: Biochemical changes in bone grafts stabilized with rigid plates. II. Cortical grafts, Acta Orthop Scand 52:265, 1981.
[7] 秦華強、劉以文 以閉鎖式互鎖骨內釘治療股骨粉碎性及截斷性骨折 國防醫學 民國八十四年十一月十五日 第二十一卷第五期 401-406頁
[8] 蘇王麟 復健醫療與長期臥床乏動之相關性 馬偕院訊 民國八十四年十一月 23-24頁
[9] The Universal Nailing System--A Systematic Approach to IM Nailing; AO/ASIF--Original Instruments and Implants of the Association for the Study of Internal Fixation; Synthesis.RTM., pp. 1-6, 1989.
[10] Wiss DA, Fleming CH, Matta JM, Clark D: Comminuted and rotationally unstable fractures of the femur treated with an interlocking nail, Clin Orthop 212:35, 1986.
[11] 楊榮森,“老年人骨折的治療趨勢”,台灣醫誌,pp.15-40,1998
[12] J. S. Sun, S. M. Hou, T. K. Liu, “Comparision of open vs closed intramedullary nailing of femur by utilizing interlocking nail.”, J. Orth Surg ROC 7, 182-191, 1990.
[13] 邱方遙,“互鎖式骨髓內釘及Enter氏釘治療脛骨骨折臨床應用之比較”,中華骨科醫學雜誌,47-52,1994.
[14] 吳興盛,“腓脛骨骨折之診斷與處理”,國防醫學雜誌,211-214,1999.
[15] 中華民國專利公報資料庫,公告號262706, 1995
[16] 中華民國專利公報資料庫,公告號265603, 1995
[17] 中華民國專利公報資料庫,公告號275788, 1996
[18] 中華民國專利公報資料庫,公告號444588, 2001
[19] Leo Joskowicz. FRACAS: A system for computer-aided image-guided long bone fracture surgery. Comp Aid Surg 3: 271-288, 1998.
[20] R. Hofstetter. Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comp Aid Surg 4: 65-76, 1999.
[21] Eric J. Hazan. Computer-assisted image-guided intramedullary nailing of femoral shaft fractures. Techniques in Orthopaedics, Vol. 18, NO. 2, 2003.
[22] Kevin Cleary. State of the art in surgical robotics: Clinical application and technology challenges. Computer Aided Surgery 6: 312-328, 2001.
[23] Moshe Shoham. Bone-mounted miniature robot for surgical procedures concept and clinical application. IEEE Transactions on Robotics and Automation Vol. 19, NO. 5, 2003.
[24] Yarkony, G. M. Pressure ulcers: A review. Arch Phys Med Rehabil, 75, 908-917, 1994.
[25] Bernstein, L. H. The role of alternating pressure in prevention pressure sore. Stamford, CT. :Grant Airmasss Co. ,1986.
[26] Copeland-Fields, L. D. & Hoshiko, B. R. Clinical validation of braden and bergtrom’s conceptual schema of pressure sore risk factors. Rehabilitation Nursing, 14(5), 257-260, 1989.
[27] Burd, C., Langemo, D. K., Olson, B., Hanson, D., Hunter, S., & Sauvage, T. Skin problem: Epidemiology of pressure ulcers in a skilled care facility. Journal of Gerontological Nursing, 18(9), 29-39, 1992.
[28] Curry, K., & Casady, L. The relationship between extended periods of immobility and decubitus ulcer formation in the acutely spinal cord injured individual. Journal of Nuroscience Nursing, 24(4), 185-189, 1992.
[29] 陳瑞琴、駱麗華 居家護理病患壓瘡問題之探討 護理研究,1(3),257-268,1993
[30] 林笑(1996).骨骼、肌肉、關節疾病病人之護理.於許淑蓮總校閱,當代內外科護理(pp. 1265-1354).台北:華杏
[31] 彭美姿(1998).活動限制與復健運動──以下肢損傷的骨科病人為例.護理雜誌,45(4),77-83
[32] Kauhanen, S., Leivo, I., & Michelsson, J. E. (1993). Early muscle changes after immobilization. An experimental study on muscle damage. Clinical Orthopaedics & Related Research, 297, 44-50.
[33] 許樹淵(1997).運動生物力學.台北:合記
[34] Kauhanen, S., Leivo, I., & Michelsson, J. E. (1993). Early muscle changes after immobilization. An experimental study on muscle damage. Clinical Orthopaedics & Related Research, 297, 44-50.
[35] Veldhuizen, J. W., Veratappen, F. T. J., Vroemen, J. P. A., Kuipers, H., & Greep, J. M. (1993). Functional and morphological adaptations following four weeks of knee immobilization. Internal Journal Sports Medicine, 14(5), 283-287.
[36] Kasper, C. E., Maxwell, L. C., & White, T. P. (1996). Alteration in skeletal muscle related to short-term impaired physical mobility. Research in Nursing & Health, 19(2), 133-142.
[37] Berg, H. E., Tesch, P. A. (1996). Changes in muscle function in response to 10 days of lower limb unloading in humans. Acta Physiological Scandinavian, 157(1), 63-70.
[38] Saltin, B., Blomqvist, G., Mitchell, J. H., Johnson, Jr., R. L., Wildenthal, K. & Chapman, C. B.(1968). Response to submaximal and maximal exercise after bed rest and training. Circulation, 38(Suppl. 7).
[39] Robert Teasell, MD, FRCPC. Complications of Immobilization and Bed Rest Part 2: Other complications. Canadian Family Physician VOL 39: June 1993.
[40] Carrieri-Kohlman, V., Gormley, J. M., Eiser, S., Demir-Deviren, S., Nguyen, H., Paul, S. M.,& Stulbarg, M. S.(2001). Dyspnea and the affective response during exercise training in obstructive pulmonary disease. Nursing Research, 50(3), 136-146.
[41] Berry, M. J. & Walschlager, S. A.(1998).Exercise training and chronic obstructive pulmonary disease: Past and future research directions. Journal of Cardiopulmonary Rehabilitation, 18, 181-191.
[42] Mahler, D. A. (1998). pulmonary rehabilitation. Chest, 113(4), 263S-267S.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top