(18.210.12.229) 您好!臺灣時間:2021/03/05 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:苗承元
研究生(外文):Cheng-Yuan Miao
論文名稱:全人工膝關節脛骨元件疲勞特性分析
論文名稱(外文):Fatigue Analysis for the Tibial Components of Tatal Knee Arthroplasty
指導教授:簡建堂簡建堂引用關係
指導教授(外文):Eddie Chian
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:187
中文關鍵詞:全人工膝關節脛骨疲勞
外文關鍵詞:Tatal Knee ArthroplastyTibialFatigue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這個新的世紀,人類的壽命隨著文明發展逐漸地延長,愈多國家面臨著人口老年化的窘境,雖然人類變得較長壽,但是老年疾病卻從未消失,退化性關節炎就是其中一種。它發生的機率與患者的年齡成正比,嚴重的患者須接受全人工關節置換手術( Total Knee Arthroplasty or Total Hip Arthroplasty;TKA or THA )。因此,人工關節的市場目前仍不斷地增大中。
目前TKA元件發展已逐漸成熟,但在設計上仍有許多需要改進的地方,尤其是元件的抗疲勞特性。目前在文獻上仍非常罕見對於TKA疲勞特性的探討,因此發生人工關節疲勞破壞的病例逐漸地被發現。
本研究利用有限元素法並輔以文獻上實驗的資料,相互驗證以證實數值分析方法的可靠性。文中並對於Metal Backed Tibial Components (MBT)以及All-Polyethylene Tibial Component (APT)兩種TKA不同設計的脛骨組件進行疲勞特性分析與探討,並且以設計的觀點討論與改善元件抗疲勞破壞能力,提供往後TKA元件設計者較適當的設計方向。
雖然目前TKA市場仍以較高價的MBT為主流,但研究結果證明低價位的APT比MBT有較優良的抗疲勞特性。藉由本研究結果,建議專業骨科醫師在臨床上能考量患者實際狀況,推薦弱勢患者使用成本較低的APT進行關節置換手術。
In recent years, the metal-backed tibial components (MBT) is still the mainstream product in total knee arthroplasty (TKA) market though it has higher price compared with all-polyethylene tibial component (APT). Talking about the reasons of malfunction of TKA, the original one is worn-out problem, and the new issue found recently is fatigue failure problem. Most of the malfunctions of TKA occur in MBT system. Even though some investigators had published the experimental and finite element fatigue analyses of the tibial metal base-plate. Till now, no literature report or discussion focuses on the fatigue performances of MBT and APT simultaneously. The major purpose of our research is to investigate and compare the fatigue performances of MBT and APT based on the same boundary conditions. We also propose two different designs and try to improve the fatigue failure-resistant capabilities of MBT and APT.

The fatigue of MBT and APT of the total knee arthroplasty TKA are analyzed by using the computer-aided engineering analysis methods (CAE). In our studies, the fatigue failure-resistant capability of APT is more reliable than MBT. Results show MBT will fail when the osteolysis degree reaches 0.3mm, but APT will not fail until the osteolysis degree exceeds 0.6mm. Furthermore, we also discuss the design characteristics that affect the fatigue failure-resistant capability of TKA tibial components. We conclude that high stiffness structure has positive effect to improve the fatigue ability of MBT, and high toughness material has positive effect to improve the fatigue ability of APT.
According to our researches, we recommend that professional orthopedist can priorly suggest TKA patients to choose APT while considering the clinical situations. Cheaper and durable TKA is desired by whole patients.
誌 謝 I
摘 要 III
ABSTRACT IV
目 錄 VI
圖 目 錄 X
表 目 錄 XV
第一章 前言 - 1 -
1-1 研究背景 - 1 -
1-2 膝關節簡介 - 2 -
1-3 膝關節的疾病 - 5 -
1-3.1 退化性關節炎(Osteoarthritis) - 6 -
1-4 TKA簡介 - 8 -
1-4.1 TKA的構造 - 9 -
1-4.2 TKA在材料上的要求 - 12 -
1-4.3 TKA失敗的主因 - 13 -
1-4.4 TKA脛骨元件破壞的主因 - 13 -
1-4.5 近年TKA因金屬疲勞而導致失敗的案例 - 15 -
1-5 材料的疲勞 - 17 -
1-5.1 疲勞損傷 - 17 -
1-5.2 疲勞破壞特徵 - 18 -
1-6 疲勞相關定義 - 20 -
1-6.1 S-N曲線 - 21 -
1-6.2 Linear Damage Rule - 22 -
1-6.3 載荷型態 - 23 -
1-6.4 主應力修正 - 24 -
1-6.5 主應力修正關係式 - 25 -
1-7 研究動機與目的 - 27 -
1-8 文獻回顧 - 29 -
1-8.1 測試規範 - 29 -
1-8.2 ASTM與ISO兩者規範差異 - 33 -
1-8.3 疲勞測試相關文獻 - 34 -
第二章 研究方法 - 40 -
2-0 研究流程圖 - 41 -
2-1 三維實體模型的建立 - 42 -
2-2 有限元素分析 - 48 -
2-2.1 有限元素分析工具 - 49 -
2-2 材料性質的設定 - 51 -
2-3 網格模型的建立與其收斂測試 - 53 -
2-4 邊界條件 - 54 -
2-4.1 骨溶解程度 - 56 -
2-4.2 拘束 - 60 -
2-5 載荷 - 61 -
2-5.1 載荷位置 - 61 -
2-5.2 載荷大小 - 62 -
2-5.3 應力比與載荷頻率 - 63 -
2-6 後置處理 - 63 -
2-6.1 von Mises Stress - 64 -
2-7 應力集中與破壞位置判定 - 65 -
2-8 預測疲勞行為 - 65 -
第三章 結果 - 66 -
3-1 收斂測試 - 67 -
3-2 收斂測試結果 - 70 -
3-3 有限元素分析結果與實驗成果驗證 - 75 -
3-3.1 Baseplate系統有限元素分析結果與驗證 - 75 -
3-3.2 PE Insert系統有限元素分析結果與驗證 - 79 -
3-4 有限元素分析結果 - 83 -
3-5 疲勞特性分析分析 - 96 -
第四章 討論 - 104 -
4-1 與臨床資料對照 - 105 -
4-2 APT的優勢 - 106 -
4-3 MBT元件間的微移動 - 108 -
4-3 肋長度與疲勞特性 - 110 -
4-4 超高分子量聚乙烯層厚度與疲勞特性 - 122 -
4-5 UHMWPE機械性質的改變對疲勞特性的影響 - 134 -
4-5.1 取得UHMWPE材料樣本 - 135 -
4-5.2 取得UHMWPE材料性質 - 136 -
4-5.3 以有限元素法模擬UHMWPE拉伸試驗 - 140 -
4-5.4 改變UHMWPE材質對APT疲勞特性的影響 - 142 -
第五章 結論 - 148 -
參考文獻 - 150 -
[1]台灣捷邁醫療器材股份有限公司網頁.
[2]民 92 立委周雅淑對行政院衛生署質詢函 院臺專字第0920053020號
[3]Atlas der Anatomie des Menschen著. 藍琴臺、難安修、張宏名 譯. 彩色解剖學圖譜(2) .1999.
[4]PFIZER公司DM
[5]James A.et al,“Factors Affecting the Durability of Primary Total Knee Prostheses“ ,J. Bone Joint Surgery, 85:259-265,2003
[6]聯合骨科器材股份有限公司-聯膝人工膝關節產品目錄
[7]Udomkiat P. et al, ”Matched-Pair Analysis of All-Polyethylene Versus Metal-Backed Tibial Components”, J.Arthroplasty 16(6),689-696,2001.
[8]Hon-Ming Ma; MD, Chun-Hsiung Huang, MD et al,” Long-term result of Total Condyle Knee Arthroplasty”, J.Arthroplasty ,20(5),580-584,2005.
[9]Chiu F.Y.; Lin C.Y. et al, ”Cerfuroxime-Impregnated Cement at Primary Total Knee Arthroplasty in Diabetes Mellitus”, J. Bone Surgery,83-B(5) ,691-695,2001.
[10]Scott R.; Eward F. et al, ”Fracture of the Metallic Tibial Tray following Total Knee Replacement”, J. Bone and Joint Surgery,66-A(5),780-782,1984.


[11]Morry B.; Chao E. et al, ”Fracture of the Poros-Coated Metal Tray of a Biologically Fixed Knee Prosthesis”, Clinical Orthopedics and Related Reserched,228,182-189,1988.
[12]Flivik G.; Ljung P. et al, ”Fracture of the Tibial Tray of the PCA Knee–A Case Report of Early Falure Cased by Improper Design”, Acta Orthop Scand,61(6),1990.
[13]Abernethy P.; Robinson C. et al, “Fracture of the Metal Tibial Tray After Kinematic Total Knee Replacement”, J. Bone and Joint Surgery,78-B(2),220-225,1996.
[14]Altintas F.; Sener N. et al, “Fracture of the Tibial Tray After Total Knee Arthroplasty”,J.Arthroplasty,14(1),112-114,1999.
[15]Clarke H.; Trousdale R., ” Component Fracture of Total Knee Arthroplasty”, The Knee,6,261-267,1999.
[16]Swarts E.; Susan J. Miller S., “Fracture Whiteside Otholoc II Knee Components”, J.Arthroplasty,16(7),927-934,2001.
[17]Ta-Feng Ho; Ming-Chou Ku et al, “Early Tibial Tray Failure of a Duracon Knee With Retrieval Analysis”,The Journal of Arthroplasty,19(6),797-802,2004.
[18]馬偕醫院病歷資料
[19]鄭修麟,材料的力學性能,第八章,西北工業大學出版社,2000.
[20]姜傳之、趙時熙、王春生、張崢,工程材料的力學性能,第五章,北京航空航天大學出版社,2000.
[21]S.SURESH著 王中光 等譯,材料的疲勞(第二版),第一章,國防工業出版社,1999.


[22]趙少汴、王忠保,抗疲勞設計-方法與數據,第一章,機械工業出版社,1997.
[23]趙少汴、王忠保,抗疲勞設計-方法與數據,第三章,機械工業出版社,1997.
[24]徐灝,疲勞強度,第一章,高等教育出版社,1988.
[25]COSMOS
[26]Yung-Li Lee; Jwo Pan; Richard Hathaway; Mark Barkey , “Fatige Testing And Analysis – Theory and Practice”,P139, ELSEVIER,2004.
[27]ASTM-F1800-04,”Standard Test Method for Cyclic Fatigue Testing of Metal Tibial Tray Components of Total Knee Joint Replacements”.
[28]ISO-14879-1 2000(E),”Implants for Surgery - Total Knee Joint Prosheses. Part1: Determination of Endurance Properties of Knee Tibial Trays”.
[29]Ahir SP.;Blunn G. et al, “Evaluation of a Testing Method for the Fatigue Performance of Total Knee Tibial Trays”. Journal of Biomechanics,32,1049-1057,1999.
[30]Ahir SP.;Walker P. et al, “Is the ISO Test for Knees Clinically Relevant ?”, Combined Orthopedic Research Societies Meeting ,June 1-3,Rhodes,Greece,2001.
[31]Ahir SP.; Blunn G. et al, “Pre-Clinical Testing of Tibial Tray Designs for Their Fatigue Performance”, Combined Orthopedic Research Societies Meeting ,June -3,Rhodes,Greece,2001.


[32]Bartal DL.; Rawlinson JJ; Burstin AH; Ranawat CS ; Flynn WF. ,“ Stresses in Polyethylene Components of Contemporary Total Knee Replacement “,Clinical Orthopedic and Related Reserch,317,16-82 ,1995.
[33]廖建中,以有限元素分析及體外測試評估人工膝關節之接觸特性,P52,2000.
[34]鄭惟心,全人工髖關節中超高分子聚乙烯元件之應力分布:有限元素法分析與臨床位置之比較,P47,2004.
[35]趙少汴、王忠保,抗疲勞設計-方法與數據,第三章,機械工業出版社,1997.
[36]Ying-Qiu Zhou and Norman Brown , “ The Mechanism of Fatigue in a Polyethylene Copolymer ”, J. Polymer Physics , 30 , 477-487, P484 , 1992.
[37]Mitsuo Ninomi ; Lei Wang ; Takumi Enjisu ; Kei-Chi Fukunaga , “ Fatigue Characteristics of Ultra High Molecular Weight Polyethylene with Different Molecular Weight for Inplant Material ” , J. Materials Science : Material in Medicine , 12 , 267-272 , P270 , 2001.
[38]謝佳勳,全人工膝關節脛骨基座疲勞測試分析,P66,2002
[39]謝佳勳,全人工膝關節脛骨基座疲勞測試分析,P41~P43,2002.
[40]Chun-Hsiung Huang et al, “ Long-Term Results of Total Condylar Knee Arthroplasty ” , J. Arthroplasty, 20,5 , 580-583 , P582, 2005.
[41]Chun-Hsiung Huang et al, “ The Incidence of Revision of the Metal Component of Total Knee Arthroplasties in Different Tibial-Insert Designs ” , Knee, 9, 331-334 , P334, 2002.
[42]Chun-Hsiung Huang et al, “ Long-Term Results of Total Condylar Knee Arthroplasty ” , J. Arthroplasty, 20,5 , 580-583 , P583, 2005.
[43]Apel DM, Tozzi JM, Dorr LD, “ Clinical Comparison of All-Polyethylene and Matalbacked Tibial Components in Total Knee Athroplasty ” , Clin Orthop, 273,243 ,1991.
[44]Mendenhall S.,“ Where Are Implant Prices Going ? ” , Orthop Netw News, 7,2 ,1996.
[45]Pomeroy DL, Schaper LA, Badenhausen WE, et al. ,“ Results of All-Polyethylene Tibial Components As a Cost-Saving Technique? ” , Clin Orthop, 380,140 ,2000.
[46]Stephen A. et al, “ Loosening and Osteolysis with the Press-Fit Condylar Posterior-Cruciate-Substituing Total Knee Replacement ” , J. Bone & Joint Surgery , 83,3 , 398-403 , P402, 2001.
[47]Chun-Hsiung Huang et al, “ Long-Term Results of Total Condylar Knee Arthoplasty ” , J. Arthroplasty, 20,5 , 580-584 , P583, 2005.
[48]Bartel DL, Bicknell VL, Wright TM , “ The Effect of Conformity Thickness and Material on Stresses in Ultra-High Molecular Weight Components for Total Joint Replacement ” , J. Bone & Joint Surgery, 68-A,7 ,1041-1051 ,1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔