跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江宗鴻
研究生(外文):Chiang Tsung Hung
論文名稱:複合材料高架地板在樹脂轉注真空成型法下之研製及分析
論文名稱(外文):Manufacture and analysis of composite elevated floor plates by VARTM process
指導教授:張瑞榮張瑞榮引用關係
指導教授(外文):Chang Rang Rong
學位類別:碩士
校院名稱:中華技術學院
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:複合材料有限單元法樹脂轉注真空成型法高架地板破壞分析
外文關鍵詞:Laminated composite materialsFinite element methodVARTMElevated floorFailure analysis
相關次數:
  • 被引用被引用:4
  • 點閱點閱:607
  • 評分評分:
  • 下載下載:108
  • 收藏至我的研究室書目清單書目收藏:1
本論文在研發一質輕且高強度材質的高架地板,係利用複合材料質輕高強度之特性,藉由乾式長纖維疊層包覆成高架地板本體之結構形態,再利用真空輔助式樹脂轉注成型法注入樹脂於設定之模具內,使模穴內之長纖維預成形物與樹脂充分膠合浸潤,並在設定溫度之下一體熱硬化成形,如此可減輕高架地板結構重量及加工成本,進而利用高強度均勻結構,增進整體地板支撐效果。
理論方面,利用有限元素軟體ANSYS來分析及設計幾何模型,探討高架地板之應力分布,再與Fortran程式連結分析破壞準則,並以合適的破壞準則為基礎驗證高架地板的破壞情形,製作不同角度的高架地板,進行靜態壓力的試驗,研究理論分析與實驗之破壞模式與強度,比較理論值與實驗值相當接近,故證明本文所設計的高架地板可以達到設計目標。
中文摘要 .................................................................................................i
英文摘要 ................................................................................................ii
誌謝 .......................................................................................................iii
目錄 .......................................................................................................iv
表目錄 ...................................................................................................vi
圖目錄 ..................................................................................................vii
第一章 緒論 ........................................................................................1
1.1 前言 ..........................................................................................1
1.2 文獻回顧 ..................................................................................2
1.3 研究方向 ..................................................................................3
第二章 複合材料積層板力學分析 ....................................................5
2.1 一階剪變形理論 ......................................................................5
2.2 虛功法 ......................................................................................9
2.3 剪力修正因子 ........................................................................11
2.4 有限元素公式化 ....................................................................12
2.5 破壞準則 ................................................................................14
第三章 ANSYS有限單元分析 ........................................................20
3.1 以ANSYS檢驗平板問題 ......................................................20
3.2 高架地板之有限單元分析 ....................................................24
第四章 複合材料高架地板之製作與實驗 ......................................27
4.1 複合材料高架地板之設計 ....................................................27
4.2 複合材料高架地板之製作 ....................................................28
4.3 真空輔助式樹脂轉注成型法之迴路設計及實驗 ................30
4.4 複合材料高架地板之靜態實驗程序 ....................................31
4.5 材料常數之量測 ....................................................................31
第五章 實驗結果與理論分析 ..........................................................33
5.1 高架地板之實驗結果 ............................................................33
5.2 高架地板之分析結果 ............................................................34
5.3 四組高架地板之結果討論 ....................................................35
5.4 高架地板之最佳化設計 ........................................................35
5.5 結果討論 ................................................................................37
第六章 結論與未來發展方向 ..........................................................38
6.1 結論 ........................................................................................38
6.2 未來發展方向 ........................................................................38
參考文獻 ..............................................................................................40
附錄 ......................................................................................................44
[1]Skinner David J. “Rapidly Solidfied Aluminum Based Alloys Containing Silcon for Elevated Temperature Applications” US Patent No.4,729,790 , 1988.
[2]Adam Colin M. “Rapidly Solidfied Aluminum Based , Silicon Containing Alloys for Elevated Temperature Applications” US Patent No.4,828,632 , 1989.
[3]Skinner David J. “Aluminum-Iron-Vanadium Alloys Having High Strength at Elevated Temperatures” US Patent No.4,715,893 , 1987.
[4]J. S. Hayward , B. Harris “Effect of Process Variables on the Quality of RTM Mouldings” SAMPE J. Vol. 26 , No.3 , 39-46 , 1990.
[5]T. Staffan Lundstrom , B. Rikard Gebart “Influence From Process Parameters on Void Formation in Resin Transfer Molding” Polymer Composites , Vol. 15 , No.1 , 25-33 , 1994.
[6]R. J. Johnson , R. Pitchumani “Enhancement of flow in VARTM using localized induction heating” Composites Science and Technology 63 , 2201-2215 , 2003.
[7]D. R. Nielsen , R. Pitchumani “Closed-loop flow control in resin transfer molding using real-time numerical process simulations” Composites Science and Technology 62 , 283-298 , 2002.
[8]Douglas S. Cairns , Dell R. Humbert , John F. Mandell “Modeling of resin transfer molding of composite materials with oriented unidirectional plies” Composites : Part A 30 , 375-383 , 1999.
[9]Jeffrey M. Lawrence , et al. “An approach to couple mold design and on-line control to manufacture complex composite parts by resin transfer molding” Composites : Part A 33 , 981-990 , 2002.
[10]Po Jin Kim , Dai Gil Lee “Surface quality and shrinkage of the composite bus housing panel manufactured by RTM” Composite Structures 57 , 211-220 , 2002.
[11]Reissner E. “Finite Deflection of Sandwich Plates” J. Aero. Sci. 15 , 435-440 , 1984.
[12]Habip L. M. “A Survey on Modern Developments in the Analysis of Sandwich Structures” Appl. Mech. Rev. 18 , 93-98 , 1965.
[13]Han-pinkan Ju-chin Huang “Large Deflections of Rectangular Sandwich Plates” AIAA J. 5 , 1706-1708 , 1967.
[14]Pagano N. J. “Exact Solution for Rectangular Bi-directional Composite and Sandwich Plates” J. Composite Material 4 , 20-34 , 1970.Khatua T. P. and Cheung Y. K. “Bending and Vibration of Multilayered Sandwich Beams and Plates” Int. J. Numer. Meth. Engng 16 , 11-24 , 1973.
[15]Whitney J. M., ”Stress Analysis of Thick Laminated Composite and Sandwich Plates” J. Composite Material 6 , 426-440 , 1972.
[16]Kamiya N. “Govering Equations for Larg Deflections of Sandwich Plates” AIAA J. 14 , 250-253 , 1976.
[17]Pandya B. N. , Kant T. “Higher-Order Shear Deformable Theories for flexure of Sandwich Plate-Finite Element Evaluations” Int. J. Solids Structure 24 , 1267-1286 , 1988.
[18]Rao M. K. , Meyer-Piening H. R. “Analysis of Sandwich Plates Using a Hybrid-stress Finite Element” AIAA J. 29 , 1498-1506 , 1991.
[19]Ha K. H. “Finite Element Analysis of Sandwich Plates: An overview” Computer & Structure 37 , 397-403 , 1990.
[20]Vinson J. R. , Handel P. I. “Optimal Stacking Sequences of Composite Faces for Various Sandwich Panels and Loads to Attain Minimum Weight” Proceedings of the AIAA/ASME 29th Structures , Structural Dynamics and Material Conference , 999-1004 , 1988.
[21]Bushnell D. “Truss-Core Sandwich Design via PANDA 2” Proceedings of the AIAA/ASME 29th Structures , Structural Dynamics and Material Conference , 1313-1332 , 1990.
[22]Kodiyalam S. , Nagendra S. and Destefano J. “Composite Sandwich Structure Optimization with Application to Satellite Components” AIAA J. 34 , 614-621 , 1996.
[23]Kam T. Y. , Lai F. M. , Chao T. M. “Optimum Design of Laminated Composite Foam-Filled Sandwich Plates Subjected to Strength Constraint” Int. J. Solids and Structures 36 , 2865-2889 , 1999.
[24]R. R. Chang “Finite Element Analyses and Experimental Considerations of the Deflection and Failure Behavior of an Asymmetrical Composite Bicycle Handlebar” Proceeding of the Institution of Mechanical Engineers Parts E: Journal of Process Mechanical Engineering 216 , 207-218 , 2002.
[25]R. R. Chang , J. M. Chu “Predictions of First-ply Failure Load of Laminated Composite Shafts” Journal of Experimental Mechanics 43 , 183-193 , 2003.
[26]K. Washizu “Variational Methods in Elasticity and Plasticity” Pergamon Press , New York , 1982.
[27]E. Reissner “The effect of transverse shear deformation on the bending of elastic plates” J. Appl. Mech. Trans. ASME 12 , 69-77 , 1945.
[28]J. M. Whiteny “Shear correction factors for orthotropic laminates under static load” J. Appl. Mech. 40 , 302-304 , 1973.
[29]J. N. Reddy “A penalty plate-bending elemnt for the analysis of laminated anisotropiccomposite platrs” INTERNATIONAL JOUMERICAL METHODS IN ENGINEERING , VOL. 15 , 1187-1206 , 1980.
[30]N. D. Phan , J. N. Reddy “Analysis of laminated composite plates using a higher-order shear deformation theory” Internat. J. Numer. Methods. Engrg. 21 2201-2219, 1985.
[31]A. K. Noor “Free vibrations of multilayered composite plates” AIAA J. 11 1038-1039, 1973.
[32]Y. S. N. Reddy , J. N. Reddy “Linear and non-linear failure analysis of composite laminateswith transverse shear” Composites Science and Technology 44 , 227-255 , 1992.
[33]楊智超 , 張煥修 “高溫鋁合金產品之擠壓鑄造方法” 中華民國專利公告第356,433號 , 1999.
[34]黃建德 “一種複合式高架地板結構” 中華民國專利公告第529,650號 , 2002.
[35]許明發 , 柯澤豪 , 劉顯光 , 郭文雄 “複合材料入門”中華民國尖端材料科技協會 , Chapter5 , 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊