跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奕翔
研究生(外文):Yi-Hsiang Haung
論文名稱:利用精密電鑄技術製作之微針頭
論文名稱(外文):Microneedles fabricated by precision electroforming
指導教授:侯帝光
指導教授(外文):Max Ti-Kuang Hou
學位類別:碩士
校院名稱:中華技術學院
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:54
中文關鍵詞:電鑄濺鍍
外文關鍵詞:ElectroformingSputter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1036
  • 評分評分:
  • 下載下載:308
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來在醫學上許多病患需要長期接受藥物的注射治療,但是在注射的同時也伴隨著疼痛的產生,故許多的病患因害怕疼痛而拒絕接受治療延誤了第一治療時間,故許多研究者先後投入研發微針頭之行列。
由於微機電技術蓬勃發展,許多學者利用微機電技術先後製做出微針頭,但目前許多的微針頭以矽基體為主,原因是金屬本身以傳統加工針頭之方式以達一臨界點,故要使金屬在微小尺度下達到中空為一相當困難之事,故本篇論文利用精密電鑄技術配合溶化犧牲層,使其金屬可在微小尺度下達成中空。
本文主要說明利用精密微電鑄技術製作微針頭之方法。本論文利用鋁線當基材,在鋁線上先塗佈一層樹脂當犧牲層,再濺鍍一層金屬導電層於此樹脂犧牲層上,再於此導電層上進行銅電鑄,再將電鑄好的銅針放入丙酮中,去除中間的樹脂層,待去除完畢,將中間鋁線拉出,即可形成中空微針。銅微針頭之外圍直徑為75μm,內部直徑為30μm。銅針與已完成的微流晶片結合進行穿刺實驗及液體注射實驗,結果證實了以此微針頭進行注射之可行性。
This paper demonstrates the microneedles fabricated by the precision electroforming. We used aluminum wire as the “core mold” of the microneedles. First, we coated a layer of resin surrounding the aluminum wire as the sacrificial layer. Second, we sputtered a gold layer to be the initial electroplating layer. Third, the copper layer was electroplated from the gold layer. After electroplating, the multilayer wire was put into acetone to dissolve the resin sacrificial layer. Then, the core mold was removed, and the copper tube was made up. Finally, the microneedle was fabricated after division and outlet shaping. The external and internal diameters of fabricated microneedle are 75μm and 30μm. The basic function of these microneedles are fully demonstrated in this thesis.
中文摘要 ............................................................Ⅰ
英文摘要.............................................................Ⅱ
目錄................................................................Ⅲ
圖目錄..............................................................Ⅴ
表目錄..............................................................Ⅷ
第一章 緒論.........................................................1
第二章 文獻回顧
2-1中空尖點斜口型之微針頭..............................................7
2-2新式開口向上微針頭(尖錐式微針頭).....................................9
2-3中空平面斜口式微針頭...............................................11
2-4平面開口式之微針頭及微流道系統......................................13
第三章 針頭製作流程
3-1最初微針頭之設計..................................................17
3-2改良之微針頭設計...............................................22
3-3 微流道之設計與製作.............................................30
3-4 後端流道與微針頭之結合............................................30
3-5 陣列式微針頭與流到晶片組合.........................................32
第四章 注射實驗
4-1第一代微針系統洋菜凍注射實驗........................................34
4-2第一代微針系統雞肉注射實驗.........................................36
4-3第二代陣列式微針頭系統洋菜凍注射實驗.................................38
4-4第二代陣列式微針頭系統雞肉注射實驗...................................40
第五章 結果與討論
5-1 改良前製程之探討.................................................43
5-2 改良後針頭製程之探討..............................................45
第六章 結論與未來規劃
6-1 結論............................................................50
6-2 未來規劃........................................................51
參考文獻............................................................52
[1] 江明玲,當代基本護理學,華杏出版社,2002。
[2] 葉旭均,三維斜口電鑄微針陣列之研製,國立清華大學工程與系統科學系碩士論文,2003。
[3] http://www.nmns.edu.tw/New/PubLib/NewsLetter/89/155/8-1.htm
[4] http://www.china.com.cn/chinese/TEC-c/135944.htm
[5] R. Sharaf, P. Aggarwal, K. V. I. S. Kaler and W. Badawy, “On The Design Of An Electronic Mosquito: Design And Analysis Of The Micro-Needle,” Proceedings. International Conference of MEMS NANO and Smart Systems, pp. 32 – 35, 2003.
[6] 楊啟榮、強玲英、黃奇聲, “微系統LIGA製程之精密電鑄技術” 科儀新知, 第二十一卷,第六期,第15-27頁,2000。
[7] S. Chandrasekaran, D. J. Brazzle and A. Bruno Frazier, “Surface Micromachined Metallic Microneedles,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 3, pp. 281-288, 2003.
[8] L. Liwei and P. A. Pisano, “Silicon-Processed Microneedles,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 8, NO. 1, pp. 78-84, 1999.
[9] L. Ran, W. Xiaohao, Z. Zhaoying, and D. J. Williams, “Microneedles Array For Fluid Extraction And Drug Delivery,” Proceedings of 2003 International Symposium on Micromechatronics and Human Science, pp. 239 – 244, 2003.
[10] P. Jung-Hwan, G. M. Allen and R. M. Prausnitz1, “Biodegradable Polymer Microneedles: Fabrication, Mechanics And Transdermal Drug Delivery,” 26th Annual International Conference of the IEEE EMBS, pp. 2654 – 2657, 2004.
[11] M. Bin, G. Zhiyin, L. Sheng, “Flexible Silicon Microneedles Array for Micro Fluid Transfer,” 6th International Conference Electronic Packaging Technology, pp. 1-5, 2005.
[12] H. Heng-Chi, and F. Chien-Chung, “Out-Of-Plane Polymer Hollow Microneedle Array Integrated On A Microfluidic Chip,” Sensors, pp, 484 - 487, 2005.
[13] K. Serope, Manufacturing Engineering and Technology, ADDISON-WESLEY PUBLISHING COMPANY
[14] J.G.E. Gardenier, J.W. Berenschot, M.J. de Boer, Y. Yeshurun, M. Hefetz,R. van 't Oeve and A. van den Berg, “Silicon Micromachined Hollow Microneedles For Transdermal Liquid Transfer,” Micro Electro The Fifteenth IEEE International Conference of Mechanical Systems., pp. 141 – 144, 2002.
[15] H. J. G. E. Gardeniers, L. Regina, J. W. E. Berenschot, M. J. de Boer, Y. S. Yeshurun, M. Hefetz, R. van’t Oever, and A. van den Berg, “Silicon Micromachined Hollow Microneedles For Transdermal Liquid Transport,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, pp. 855-862, 2003.
[16] G. Patrick and S. Goran, “Novel, Side Opened Out-Of-Plane Microneedles For Microfluidic Transdermal Interfacing,” The Fifteenth IEEE International Conference of Micro Electro Mechanical Systems, pp. 467-470, 2002.
[17] S. Boris, and L. Dorian, “Arrays of Hollow Out-of-Plane Microneedles for Drug Delivery,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, pp. 472 – 479, 2005.
[18] P. Seung-Joon, L. Jung-Min, J. Ilwoo, P. Yonghwa, B. Sangwon, C. Seok, C. Kukjin, C. Junkeun and C. Dongil Dan, “A Novel Microneedle Array Integrated With A PDMS Biochip For Microfluid Systems,” 12th International Conference of Solid-State Sensors, Actuators and Microsystems, pp. 1446 – 1449, 2003.
[19] P. Seung-Joon, B. Sangwon, L. Jung-Min, P. Yonghwa, L. Ahra , C. Seok, C. Junkeun, C. Kukjin, and C. Dongil Dan, “In-Plane Single-Crystal-Silicon Microneedles For Minimally Invasive Microfluid Systems,” Sensors and Actuators A 114, pp. 276–284, 2004.
[20] B. Behraad, and C. Shafai, “Deep Etching Of Silicom With XeF Gas,” IEEE CCECE Canadian Conference of Electrical and Computer Engineering, pp. 460 – 464, 2002.
[21] M. Vopsaroiu, M. J. Thwaites, S. Rand, P. J.Grundy, K. O'Grady, “Novel Sputtering Technology For Grain-Size Control,” IEEE Transactions on Magnetics, VOL. 40, pp. 2443 – 2445, 2004.
[22] J. H. Brannon, “Excimer-Laser Ablation And Etching,” Circuits and Devices Magazine, Vol. 6, pp. 18 – 24, 1990.
[23] 吳永進、林美櫻, AutoCAD 2004&2005特訓教材, 全華科技圖書公司, 2004。
[24] http://www.epa.gov.tw
[25]http://web.cc.ntnu.edu.tw
[26] http://www.itri.org.tw/weo/05-06-2002/news/09.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top