跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖家慶
研究生(外文):Chia Ching Liao
論文名稱:石墨表面改質之鋰離子二次電池負極材料性能研究
論文名稱(外文):The effect of surface modification on graphite as anode materials for lithium ion batteries
指導教授:吳玉祥
指導教授(外文):Yu-Shiang Wu
學位類別:碩士
校院名稱:中華技術學院
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:86
中文關鍵詞:鋰電池
外文關鍵詞:lithium ion batteries
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1004
  • 評分評分:
  • 下載下載:252
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的主要探討藉由表面改質的方法,來改善鋰離子電池負極石墨材料的表面結構,以達到降低不可逆電容量、穩定電容量衰退現象以及提升電容量等電化學性能。本實驗所使用的石墨粉末分別為台灣大學材料研究所以熔解偏析石墨(Dissolution precipitation graphite;DPG)製備的人工石墨以及外購的球形天然石墨,表面氟化是藉由氟氣於不同反應溫度及時間下使 DPG 人工石墨的表面結構形成 CxF,以及表面氧化是利用氧化性溶液對球形天然石墨進行反應,以形成碳氧化物披覆於球狀天然石墨的表面。藉由表面改質的方式可穩定石墨的層間結構,以降低充放電過程中第一次不可逆電容量與電容量衰退的現象。

實驗中利用拉曼光譜儀(Raman spectroscopy)分析石墨表面性質,X光繞射分析儀(XRD)分析石墨整體特性,以及掃描式電子顯微鏡(SEM)觀察表面形態,發現 DPG人工石墨在適當的溫度與時間下與氟氣反應,其第一次不可逆性有降低的現象,由此可見經由表面氟化處理,於表面形成 CxF,有助於第一次不可逆電容量的降低;另外球形天然石墨經過表面氧化處理之後,其電容量的衰退較為穩定,且循環電容量有所提升。

關鍵字:鋰離子電池、石墨、表面改質、表面氟化、表面氧化、氧化性溶液
Abstract
The purpose of this research was to improve electrochemical characteristics and surface structure on graphite negative material of lithium ion secondary battery by surface modification methods that decrease the irreversible capacity, steady and enhance the capacity. In this study, the raw materials were used by DPG (Dissolution precipitation graphite) artificial graphite from NTU material institute and spherical natural graphite. The DPG was heated to form CxF on the DPG surface by fluorine gas. The surface oxidation of natural graphite reacted with oxidative solutions to form dense oxides layer on its surface. Due to the surface modifications, the structure of graphene layer can be steady that to decrease the first irreversible capacity and electrochemical performance.
The analysis on surface properties is investigated by Raman spectroscopy and the bulk is analyzed by X-ray diffraction measurements. The morphology of graphite is obtained by scanning electron microscope (SEM). It was observed that artificial graphite reacted with fluorine by different temperature and time. The CxF of DPG surface shows a lower the first irreversible capacity. Spherical natural graphite with mild oxidation can steady and increase cycle capacity.
Keywords: lithium ion battery; graphite; surface modification; surface fluorination; surface oxidation; oxidative solution
目 次

中文摘要 .............................................................................. i
英文摘要 ............................................................................ ii
目 次 ....................................................................................... iii
表 目 錄 ............................................................................................ vi
圖 目 錄 ........................................................................................... vii
第一章 緒 論 ............................................................................... 1
第二章 文獻回顧 ............................................................................... 4
2-1 鋰離子電池的發展 .................................................................. 4
2-2 鋰離子二次電池的運作原理 .................................................... 6
2-3 鋰離子二次電池的電極材料 ................................................... 10
2-3-1正極材料 ...................................................................... 10
2-3-2負極材料 ...................................................................... 13
2-3-3 電解質造成的電化學現象 .............................................. 15
2-4 石墨材料的簡介與分類 ............................................................ 16
2-5 石墨材料改質的方式........................................................ 22
2-5-1石墨表面之氟化處理 .............................................. 24
2-5-2石墨表面之氧化處理 .............................................. 27

第三章 實驗方法與步驟 ...................................................... 30
3-1 實驗設備 ............................................................................... 30
3-2分析設備 ................................................................ 31
3-3 人工石墨之氟化處理 ................................................. 32
3-4 天然石墨之氧化處理 ............................................................... 35
3-4-1 氧化性溶液之氧化處理 ....................................................... 35
3-4-2 空氣(Air)之氧化處理 ...................................................... 36
3-5電池電極之塗佈與電池組裝.............................................. 38
3-5-1 電極塗佈 ...................................................................... 38
3-5-2 電池組裝 ...................................................................... 39
3-5-3 充放電測試 .................................................................... 41
3-6人工石墨粉末鑑定分析 .............................................................. 42
3-6-1 X光繞射分析儀(XRD)............................................... 42
3-6-2 拉曼光譜分析儀(Raman spectroscopy)........................ 43
3-6-3 掃描式電子顯微鏡(SEM)............................................ 44

第四章 結果與討論 ............................................................................................... 45
4-1 人工石墨氟化處理之分析 ............................................................ 46
4-1-1 人工石墨之氟化處理XRD分析 ....................................... 46
4-1-2人工石墨氟化處理之Raman光譜分析 ............................. 50
4-1-3人工石墨氟化處理之SEM觀察 ....................................... 52
4-1-4人工石墨氟化處理作為鋰電池負極材料之特性 ................. 55
4-2 天然石墨氧化處理之分析 ............................................................. 59
4-2-1天然石墨氧化處理之XRD分析 ....................................... 59
4-2-2 天然石墨之氧化處理Raman光譜分析 ............................. 63
4-2-3天然石墨氧化處理之SEM觀察 ...................................... 65
4-2-4 天然石墨氧化處理作為鋰電池負極材料之特性 ................. 73

第五章 結 論 .............................................................................. 78

參考文獻 ............................................................................................. 80

附錄 ........................................................................................................................... 85
作者簡介 .................................................................................................... 86
參考文獻
[1] 經濟部投資業務處網站,「鋰離子可充電式電池」,(網址:http://www.dois.moea.gov.tw/index.asp)
[2] 楊模樺,「鋰電池元件精密化學品」,化工技術,第11卷第8期 (2004)118-125
[3] 李文雄,「鋰電池E世代的能源」,科學發展,第362期 (2003) 32-35
[4] 電動機車學習網,「鋰離子電池」(網址:http://www.nsc.gov.tw/dept/acro /version01/battery/electric/types/liplus.htm)
[5] 李源弘編譯,雷永泉主編,「新能源材料」,新文京開發出版公司 (2004)
[6] Y.P. Wu, C. Wan, C. Jiang and S.B. Fang, “Lithium Ion Secondary Batteries,” Chemical Industry Press (2002)
[7] 蕭金柱,「硼與碳在鑄鐵中的冶金效應」,國立台灣大學材料科學與工程學研究所碩士論文 (2000)
[8] 姚慶意,陳金銘,「鋰離子二次電池負極材料介紹」,工業材料,110期(1996)57-64
[9] R. Wiesendanger, D. Anselmetti, V. Geiser, H.R. Hidber and H.J. Güntherodt, “Surface structure of graphite intercalation compounds resolved in real space by scanning tunneling microscopy,” Synthetic Metals 34 (1989) 175-185
[10] Y.P. Wu, E. Rahm and R. Holze, “Carbon anode materials for lithium ion batteries,” J. Power Sources 114 ( 2003) 228-236
[11] 陳金銘,「高容量碳粉材料」,工業材料,133 期(1998)85-92
[12] 林振華,林振富編譯,「充電式鋰離子電池材料與應用」,全華科技圖書公司 (2001)
[13] D. Aurbach, B. Markovsky, I. Weissman, E. Levi and Y. Ein-Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries,” Electrochimica Acta 45 (1999) 67-86
[14] E. Peled, C. Menachem, D. Bar-Tow and A. Melman,“Improved graphite anode for lithium-ion batteries-chemically bonded solid electrolyte interface and nanochannel formation,” J. Electrochem. Soc. 143 (1996) L4-L7
[15] T. Zheng, W.R. Mckinnon and J.R. Dahn,“Hysteresis during lithium insertion in hydrogen-containing carbons,” J. Electrochem. Soc. 143 (1996) 2137-2145
[16] J.S. Xue and J.R. Dahn,“An epoxy-silane approach to prepare anode materials for rechargeable lithium-ion batteries,” J. Electrochem. Soc. 142 (1995) 3668-3677
[17] H. Buqa, P. Golob, M. Winter and J.O. Besenhard, “Modified carbons for improved anodes in lithium ion cells,” J. Power Sources 97-98 (2001) 122-125
[18] C. Menachem, Y. Wang, J. Flowers, E. Peled and S.G.. Greenbaum, “Characterization of lithiated natural graphite before and after mild oxidation,” J. Power Sources 76 (1998) 180-185
[19] J. Li, K. Naga, Y. Ohzawa, T. Nakajima, A.I. Shames and A.M. Panich, “Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery,” J. Fluorine Chemistry 126 (2005) 265-273
[20] T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. Niwas, A. Tressaud and E. Durand, “Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries,” J. Power sources 104 (2002) 104-114
[21] V. Gupta, T. Nakajima, Y. Ohzawa and H. Iwata, “Electrochemical characteristices and structures of surface-fluorinated graphites with different particle sizes for lithium ion secondary batteries,” J. Fluorine Chemistry 112 (2001) 233-240
[22] T. Nakajima, “Fluorine-containing energy conversion materials,” J. Fluorine Chemistry 105 (2000) 229-238
[23] T. Nakajima, M. Koh, R.N. Singh and M. Shimada, “Electrochemical behavior of surface-fluorinated graphite,” Electrochimica Acta 44 (1999) 2870-2888
[24] M. Yoshio, H. Wang, K. Fukuda, Y. Hara and Y. Adachi, “Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material,” J. Electrochem. Soc. 147 (2000) 1245-1250
[25] H.Y. Lee, J.K. Baek, S.W. Jang, S.M. Lee, S.T. Hong, K.Y. Lee and M.H. Kim, “Characteristics of carbon-coated graphite prepare from mixture of graphite and polyvinylchloride as anode materials for lithium batteries,” J. Power Sources 101 (2001) 206-212
[26] Y.P. Wu, CY. Jiang, CR. Wan and E. Tsuchida, “Composite anode material for lithium ion battery with low sensitivity to water,” Electrochemical Communication 2 (2000) 626-629
[27] B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov and R. Guidottib,“Study of Sn-coated graphite as anode material for secondary lithium-ion batteries,” J. Electrochemcal. Soc. 149 (2002) A675-A681
[28] T. Nakajima, M. Koh, R.N. Singh and M. Shimada, “Electrochemical behavior of surface-fluorinated graphite,” Electrochimica Acta 44 (1999) 2879-2888
[29] J. Li, K. Naga, Y. Ohzawa, T. Nakajima, A.I. Shames and A.M. Panich, “Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery,” J. Fluorine Chemistry 126 (2005) 265–273
[30] T. Nakajima, V. Gupta, Y. Ohzawa, H. Groult, Z. Mazej and B. Žemva, “Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite,” J. Power Sources 137 (2004) 80–87
[31] T. Nakajima and N. Watanabe, “Graphite fluorides and carbon-fluorine compounds,” CRC Press, Boca Raton, (1991)
[32] V. Guptaa, T. Nakajimaa, Y. Ohzawaa and B. Žemva, “A study on the formation mechanism of graphite fluorides by Raman spectroscopy”, J. Fluorine Chemistry 120 (2003) 143–150
[33] E. Peled, D. Golodnitsky, G. Ardel and V. Eshkenazy, “The SEI model-application to lithium-polymer electrolyte batteries,” Electrochimica Acta 40 (1995) 2197-2204
[34] L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahmb, R. Holze and H.Q. Wu, “Surface modifications of electrode materials for lithium ion batteries,” Solid State Sciences 8 (2006) 113–128
[35] E. Peled, C. Menachem, D. Bar-Tow and A. Melman, “Improved graphite anode for lithium-ion batteries chemically,” J. Electrochem. Soc. 143 (1996) L4-L7
[36] Y.P. Wu, C. Jiang, C. Wan and R. Holze, “Effects of pretreatment of natural graphite by oxidative solutions on its electrochemical performance as anode material,” Electrochimica Acta 48 (2003) 867-874
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top