參考文獻
[1] 經濟部投資業務處網站,「鋰離子可充電式電池」,(網址:http://www.dois.moea.gov.tw/index.asp)
[2] 楊模樺,「鋰電池元件精密化學品」,化工技術,第11卷第8期 (2004)118-125[3] 李文雄,「鋰電池E世代的能源」,科學發展,第362期 (2003) 32-35[4] 電動機車學習網,「鋰離子電池」(網址:http://www.nsc.gov.tw/dept/acro /version01/battery/electric/types/liplus.htm)
[5] 李源弘編譯,雷永泉主編,「新能源材料」,新文京開發出版公司 (2004)
[6] Y.P. Wu, C. Wan, C. Jiang and S.B. Fang, “Lithium Ion Secondary Batteries,” Chemical Industry Press (2002)
[7] 蕭金柱,「硼與碳在鑄鐵中的冶金效應」,國立台灣大學材料科學與工程學研究所碩士論文 (2000)[8] 姚慶意,陳金銘,「鋰離子二次電池負極材料介紹」,工業材料,110期(1996)57-64[9] R. Wiesendanger, D. Anselmetti, V. Geiser, H.R. Hidber and H.J. Güntherodt, “Surface structure of graphite intercalation compounds resolved in real space by scanning tunneling microscopy,” Synthetic Metals 34 (1989) 175-185
[10] Y.P. Wu, E. Rahm and R. Holze, “Carbon anode materials for lithium ion batteries,” J. Power Sources 114 ( 2003) 228-236
[11] 陳金銘,「高容量碳粉材料」,工業材料,133 期(1998)85-92[12] 林振華,林振富編譯,「充電式鋰離子電池材料與應用」,全華科技圖書公司 (2001)
[13] D. Aurbach, B. Markovsky, I. Weissman, E. Levi and Y. Ein-Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries,” Electrochimica Acta 45 (1999) 67-86
[14] E. Peled, C. Menachem, D. Bar-Tow and A. Melman,“Improved graphite anode for lithium-ion batteries-chemically bonded solid electrolyte interface and nanochannel formation,” J. Electrochem. Soc. 143 (1996) L4-L7
[15] T. Zheng, W.R. Mckinnon and J.R. Dahn,“Hysteresis during lithium insertion in hydrogen-containing carbons,” J. Electrochem. Soc. 143 (1996) 2137-2145
[16] J.S. Xue and J.R. Dahn,“An epoxy-silane approach to prepare anode materials for rechargeable lithium-ion batteries,” J. Electrochem. Soc. 142 (1995) 3668-3677
[17] H. Buqa, P. Golob, M. Winter and J.O. Besenhard, “Modified carbons for improved anodes in lithium ion cells,” J. Power Sources 97-98 (2001) 122-125
[18] C. Menachem, Y. Wang, J. Flowers, E. Peled and S.G.. Greenbaum, “Characterization of lithiated natural graphite before and after mild oxidation,” J. Power Sources 76 (1998) 180-185
[19] J. Li, K. Naga, Y. Ohzawa, T. Nakajima, A.I. Shames and A.M. Panich, “Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery,” J. Fluorine Chemistry 126 (2005) 265-273
[20] T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. Niwas, A. Tressaud and E. Durand, “Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries,” J. Power sources 104 (2002) 104-114
[21] V. Gupta, T. Nakajima, Y. Ohzawa and H. Iwata, “Electrochemical characteristices and structures of surface-fluorinated graphites with different particle sizes for lithium ion secondary batteries,” J. Fluorine Chemistry 112 (2001) 233-240
[22] T. Nakajima, “Fluorine-containing energy conversion materials,” J. Fluorine Chemistry 105 (2000) 229-238
[23] T. Nakajima, M. Koh, R.N. Singh and M. Shimada, “Electrochemical behavior of surface-fluorinated graphite,” Electrochimica Acta 44 (1999) 2870-2888
[24] M. Yoshio, H. Wang, K. Fukuda, Y. Hara and Y. Adachi, “Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material,” J. Electrochem. Soc. 147 (2000) 1245-1250
[25] H.Y. Lee, J.K. Baek, S.W. Jang, S.M. Lee, S.T. Hong, K.Y. Lee and M.H. Kim, “Characteristics of carbon-coated graphite prepare from mixture of graphite and polyvinylchloride as anode materials for lithium batteries,” J. Power Sources 101 (2001) 206-212
[26] Y.P. Wu, CY. Jiang, CR. Wan and E. Tsuchida, “Composite anode material for lithium ion battery with low sensitivity to water,” Electrochemical Communication 2 (2000) 626-629
[27] B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov and R. Guidottib,“Study of Sn-coated graphite as anode material for secondary lithium-ion batteries,” J. Electrochemcal. Soc. 149 (2002) A675-A681
[28] T. Nakajima, M. Koh, R.N. Singh and M. Shimada, “Electrochemical behavior of surface-fluorinated graphite,” Electrochimica Acta 44 (1999) 2879-2888
[29] J. Li, K. Naga, Y. Ohzawa, T. Nakajima, A.I. Shames and A.M. Panich, “Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery,” J. Fluorine Chemistry 126 (2005) 265–273
[30] T. Nakajima, V. Gupta, Y. Ohzawa, H. Groult, Z. Mazej and B. Žemva, “Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite,” J. Power Sources 137 (2004) 80–87
[31] T. Nakajima and N. Watanabe, “Graphite fluorides and carbon-fluorine compounds,” CRC Press, Boca Raton, (1991)
[32] V. Guptaa, T. Nakajimaa, Y. Ohzawaa and B. Žemva, “A study on the formation mechanism of graphite fluorides by Raman spectroscopy”, J. Fluorine Chemistry 120 (2003) 143–150
[33] E. Peled, D. Golodnitsky, G. Ardel and V. Eshkenazy, “The SEI model-application to lithium-polymer electrolyte batteries,” Electrochimica Acta 40 (1995) 2197-2204
[34] L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahmb, R. Holze and H.Q. Wu, “Surface modifications of electrode materials for lithium ion batteries,” Solid State Sciences 8 (2006) 113–128
[35] E. Peled, C. Menachem, D. Bar-Tow and A. Melman, “Improved graphite anode for lithium-ion batteries chemically,” J. Electrochem. Soc. 143 (1996) L4-L7
[36] Y.P. Wu, C. Jiang, C. Wan and R. Holze, “Effects of pretreatment of natural graphite by oxidative solutions on its electrochemical performance as anode material,” Electrochimica Acta 48 (2003) 867-874