[1] 黃兆龍,混凝土性質與行為,詹氏書局,台北市(1999)。
[2] 葉怡成,類神經網路-模式應用與實作,儒林圖書公司,台北(2000)。
[3] 葉怡成,應用類神經網路,儒林圖書公司,台北(2001)。
[4] Kasperkiewicz, J., Racz, J. and Dubrawski, A.(1995).”HPC strength prediction using artificial neural network,” J. of Computing in Civil Engineering, ASCE, Vol. 9, No. 4, pp.279-284(1995).
[5] Abbasi, A. F., Ahmad, M. and Wasim, M.”Optimization of concrete mix proportioning using reduced factorial experimental technique,” ACI Materials Journal, Vol. 84, No. 8, pp.55-63 (1987).
[6] 蘇南,「21世紀TAICON台灣混凝土之配比設計」,高性能混凝土配比設計實作研討會論文集,台北市,第46頁(1998)。
[7] Francois de Larrard, “Optimization of high-performance concrete,” 高性能混凝土研討會,台北市,第31~44頁(1993)。
[8] de Larrard, F., Sedran, T. ”Optimization of ultra high performance concrete by the use of a packing model,” Cement and concrete Research, Vol24, No. 6, pp.997-1009(1994).
[9] 葉怡成,實驗計劃法-製程與產品最佳化,五南圖書,台北市(2001)。
[10] Shilstone, J. M. Jr. “Concrete mixture optimization,” Concrete International, June 1994, pp.31-37 (1994).
[11] Stegemann, J. A. and Buenfeld, N. R., “Mining of existing data for Cement-solidified wastes using neural networks,” Journal of Environmental Engineering, ASCE, Vol.130, No.5, pp.508-515 (2004).
[12] Kim, J. I., Kim, D. K., Feng, M. Q., and Yazdani, F., “Application of Neural Networks for Estimation of Concrete Strength,” Journal of Materials in Civil Engineering, ASCE, Vol.16, No.3, pp.257-264 (2004).
[13] Ghaboussi, J. Garrett, J. H. and Wu, X. “Knowledge-based Modeling of Material Behaviour with Neural Networks,” J. Engineering Mechanics, ASCE, Vol.117, No.1, pp.129-134 (1991).
[14] Kasperkiewicz, J., Racz, J. and Dubrawski, A., “HPC Strength Prediction Using Artificial Neural Network,” J. of Computing in Civil Engineering, ASCE, Vol.9, No.4, pp.279-284 (1995).
[15] Peng, J., Li, Z., and Ma, B., “Neural Network Analysis of Chloride Diffusion in Concrete,” Journal of Materials in Civil Engineering, ASCE, Vol.14, No. 4, pp.327-333 (2002).
[16] Nehdi, M., Djebbar, Y., and Khan, A., “Neural Network Model for Preformed-Foam Cellular Concrete,” ACI Materials Journal, Vol.98, No.5, pp.402-409 (2001).
[17] Nehdi, M., El-Chabib, H., and El-Naggar, M. H., “Predicting Performance of Self-Compacting Concrete Mixtures Using Artificial Neural Networks,” ACI Materials Journal, Vol.98, No.5, pp.394-401 (2001).
[18] Haj-Ali, R. M., Kurtis, K. E., and Akshay, R., “Neural Network Modeling of Concrete Expansion During Long-Term Sulfate Exposure,” ACI Materials Journal, Vol.98, No.1, pp.36-43 (2001).
[19] Basma, A. A., Barakat, S., and Al-Oraimi, S., “Prediction of Cement Degree of Hydration Using Artificial Neural Networks,” ACI Materials Journal, Vol.96, No.2, pp.167-172 (1996).
[20] Ghaboussi, J., Garrett, J. H. and Wu, X., “Knowledge-Based Modeling of Material Behavior with Neural Networks,” Journal of Engineering Mechanics, ASCE, Vol.117, No.1, pp.132-153 (1991).
[21] Oh, J.-W., Lee, I.-W., Kim, J.-T., and Lee, G.-W., “Application of Neural Networks for Proportioning of Concrete Mixes,” ACI Materials Journal, Vol.96, No.1, pp.61-67 (1999).
[22] James, M., “Concrete Mixture Optimization,” Concrete International, June 1990, pp.33-39 (1990).
[23] Larrard, F., Sedran, T., “Optimization of Ultra High Performance Concrete by the Use of a Packing Model,” Cement and Concrete Research, Vol.24, No.6, pp.997-1009 (1994).
[24] Kasperkiewicz, J., “Optimization of Concrete Mix Using a Spreadsheet Package,” ACI Materials Journal, Vol.91, No.6, pp.551-559 (1994).
[25] Khayat, K. H., Yahia, A. and Sonebi, M., “Applications of Statistical Models for Proportioning Underwater Concrete,” ACI Materials Journal, Vol.96, No.6, pp.634-640 (1999).
[26] Ghezal, A. and Khayat, K. H., “Optimizing Self-Consolidating Concrete with Limestone Filler by using Statistical Factorial Design Methods,” ACI Materials Journal, Vol.99, No.3, pp.264-272 (2002).
[27] Sonebi, M., Svermova, L., and Bartos, P. J. M., “Factorial Design of Cement Slurries Containing Limestone Powder for Self-Consolidating Slurry-Infiltrated Fiber Concrete,” ACI Materials Journal, Vol.101, No.2, pp.136-145 (2004).
[28] Sonebi, M., “Applications of Statistical Models in Proportioning Medium-Strength Self-Consolidating Concrete,” ACI Materials Journal, Vol.101, No.5, pp.339-346 (2004).
[29] 顏聰、張朝順,「混凝土配比之經濟化模式」,中國土木水利工程學刊,第二卷,第三期,第293-300頁 (1990)。[30] Yeh, I-Cheng, “Design of high performance concrete mixture using neural networks,” ASCE, Journal of Computing in Civil Engineering, Vol.13, No.1, pp.36-42(1999).
[31] 柯泰至,「以類神經網路建構高性能混凝土工作度模型之研究」,碩士論文,中華大學土木工程學系,新竹(2001)。[32] 陳怡成,「以類神經網路作高性能混凝土配比設計之研究」,碩士論文,中華大學土木工程學系,新竹(2001)。[33] 張清雲,「實驗計劃法應用於再生混凝土最適化配比設計之研究」,碩士論文,國立台灣科技大學營建工程系,台北(2002)。[34] 陳家偉,「以迴歸分析與類神經網路建構高性能混凝土工作度模型之比較研究」,碩士論文,中華大學土木工程學系碩士班,新竹 (2002)。[35] 許慶安,「應用類神經網路推估混凝土之抗壓強度」,碩士論文,國立成功大學,台南市(2002)。[36] 詹君治,「非監督式模糊類神經網路應用於混凝土配比設計」,行政院國家科學委員會專題研究計畫成果報告,NSC91-2218-E-231-004 (2003)。
[37] Yeh, I-Cheng, “Prediction of strength of fly ash and slag concrete by the use of artificial neural networks,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.15, No.4, pp.659-663(2003).
[38] 田耀遠,「田口法應用於混凝土配比設計及交互作用之研究」,博士論文,國立台灣科技大學營建工程系 (2004)。[39] Myers, R.H. and Montgomery, D.C., Response Surface Methodology, John Wiley & Sons, Ins. (1995).
[40] Stat-Ease. Inc, Design-Expert 6 User’s Guide (2003).
[41] http://www.resample.com/xlminer/