跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳炳傑
研究生(外文):Chen Ping Jie
論文名稱:股市動態探討:應用動態模糊模型整合支持向量機
論文名稱(外文):Exploring Stock Market Dynamism by Applying Dynamic Fuzzy Model in Combination with Support Vector Machine
指導教授:邱登裕邱登裕引用關係
指導教授(外文):Deng-Yiv Chiu
學位類別:碩士
校院名稱:中華大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:57
中文關鍵詞:模糊理論基因演算法支持向量機股市動態預測
外文關鍵詞:Fuzzy theoryGenetic algorithmSupport vector machinestock market forecast
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究提出一個新的動態模糊模型,並結合支持向量機來預測股票市場動態。在新的整合模型中,模糊模型將整體經濟變數、股市技術指標及期貨技術指標,同時整合當做模型的輸入因素;基因演算法則動態調整各輸入因素的影響力模糊模型參數;支持向量機則被用來預測下一階段的股票市場動態;在研究中並設計multiperiod的實驗方式,來模擬股市的變動性。為了衡量新的整合模型的效能,我們與傳統的預測方法相比並且設計不同的實驗來驗證。實驗結果指出,本研究所提出之模型確實能取得較其他預測模型較佳的預測準確率。
In the study, a new dynamic fuzzy model is proposed in combination with support vector machine (SVM) to forecast stock market dynamism. In this new integrated model, the fuzzy model integrates various influence factors as the input variables, and the genetic algorithm (GA) adjusts the influential degree of each input variable dynamically. SVM then serves to predict stock market dynamism in the next phase. In the meanwhile, the multiperiod experiment method is designed to simulate the volatility of stock market. To evaluate the performance of the new integrated model, we compare it with the traditional forecast methods and design different experiments to testify. From the experiment results, the model from the study does generate better accuracy in forecast than other forecast models.
Abstract…………………………………………………………………ii
Acknowledgement…………………………….……………….…….. iii
Content…………………………..………………………...…………. iv
List of Figures…………………………………….……...…….……. v
List of Tables……………………………………..…..………….….. vi
Chapter One Introduction.............................................................1
Chapter Two Literature Review……………...............................3
2.1 Stock Market Modeling..... ..... ..... ..... ............................................ 3
2.2Fuzzy Theory.................................................................................... 6
2.3 Genetic Algorithm.... .... .... .... .... .... .... .... .... .... ..........................6
2.4 Support Vector Machine .... .... .... .... .... .... .... .... .........................7
Chapter Three Methedology……………................................... 8
3.1 Architecture..................................................................................... 8
3.2 Dynamic Fuzzy Model for Influence Factors...................................9
3.3 Model Optimization with Genetic Algorithm..................................10
3.4 Prediction of Stock Market Dynamism with SVM.........................11
Chapter Four Experiment…………..........................................13
4.1 Data Preparation.......................................................................... 13
4.2 Experimental Design.................................................................... 15
4.3 Experimental Data....................................................................... 17
4.4 Technical Indicators.....................................................................22
4.5 Experimental Result......................................................................31
Chapter Five Conclusion…………...........................................36
References.…………………………………………………....37
Appendix A Introduction on Fuzzy Theory……………………. 40
Appendix B Introduction on Genetic Algorithm………………. 45
References
1.Black, A.J., Mcmillan, D.G.: Non-linear Predictability of Value and Growth Stocks and Economic Activity. Journal of Business Finance & Accounting, Vol.31. Blackwell Publishing, Oxford(2004) 439-474
2.Lo, A., Mamaysky, H., Wang, J.: Foundations of Technical Analysis: Computational Algorithm, Statistical Inference, and Empirical Implementation. The Journal of Finance, Vol. 55. Blackwell Publishing, Oxford(2000) 1705-1765
3.Lo, A.: The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective. Journal of Portfolio Management, Vol. 30. Institutional Investor, NewYork(2004) 15-44
4.Kou, R.J.: A Decision Support System for The Stock Market through Integration of Fuzzy Neural Networks and Fuzzy Delphi. Applied Artificial Intelligence, Vol. 12. Taylor & Francis Group, Philadelphia(1998) 501-520
5.Armano, G., Murru, A., Roli, F.: Stock Market Prediction By A Mixture of Genetic-Neural Experts. International Journal of Pattern Recognition and Artificial Intelligence, Vol. 16. World Scientific Publishing, Singapore(2002) 501-526
6.Matilla-Garcia, G.,Arguellu, C.: A Hybrid Approach based on Neural Networks and Genetic Algorithm to the Study of Profitability in the Spanish Stock Market. Applied Economics Letter, Vol. 12. Routledge part of the Taylor & Francis Group, Philadelphia(2005) 303-308
7.Oh, K.J., Kim, K.J.: Analyzing Stock Market Tick Data Using Piecewise Nonlinear Model. Expert Systems with Application, Vol. 22. Elsevier Science, Oxford(2002) 249-255
8.Azeem, M.F., Hanmandlu, M., Ahmad, N.: Evolutive Learning Algorithm for Fuzzy Modeling. International Journal of Smart Engineering System Design, Vol. 5. Taylor & Francis Group, Philadelphia(2003) 205-224
9.Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting Stock Market Movement Direction with Support Vector Machine. Computers and Operations Research, Vol. 32. Elsevier Science, Oxford(2004) 2513-2522
10.Yu, L., Wang, S., Lai, K.K.: Mining Stock Market Tendency Using GA-Based Support Vector Machines. Lecture Notes in Computer Science, Vol. 3828. Springer-Verlag, Berlin Heidelberg(2005) 336-345
11.Schwert, G.W.: Why Does Stock Market Volatility Change Over Time. The Journal of Finance, Vol. 44. Blackwell Publishing, Oxford(1989) 1115-1167
12.Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines. Cambridge University, New York(2000)
13.Noever, D., Baskaran, S.: Genetic Algorithms Trading on S&P 500. The Magazine of Artificial Intelligence in Finance, Vol. 1. Miller Freeman, San Francisco(1994) 41-50
14.Mahfoud, S., Mani, G.: Financial Forecasting Using Genetic Algorithms. Applied Artificial Intelligence, Vol. 10. Taylor & Francis Group, Philadelphia(1996) 543-565
15.Muhammad, A., King, G.A.: Foreign Exchange Market Forecasting Using Evolutionary Fuzzy Networked. Proc. IEEE 1997 Computational Intelligence for Financial Engineering, March 1997, 213-219
16.Kai, F., Xu, W.: Trading Neural Network with Genetic Algorithms for Forecasting the Stock Price Index. Proc. IEEE 1997 Int. Conf. Intelligent Processing Systems 1, Beijing China, Oct. 1997, 401-403
17.Vapnik V.N.: Statistical Learning Theory. New York: Wiley; 1998.
18.Vapnik V.N.: An Overview of Statistical Learning Theory. IEEE Transactions of Neural Networks, Vol. 10. IEEE(1999) 988–99.
19.Cao L.J., Tay, F.: Financial Forecasting Using Support Vector Machines. Neural Computing Applications, Vol. 10. (2001) 184–92
20.Tay, F., Cao L.J.: Application of Support Vector Machines in Financial Time Series Forecasting. Vol.29. Omega(2001) 309–17
21.Tay, F., Cao L.J.: A Comparative Study of Saliency Analysis and Genetic Algorithm for Feature Selection in Support Vector Machines. Vol.5. Intelligent Data Analysis(2001) 191–209
22.Tay F., Cao L.J.: Improved Financial Time Series Forecasting by Combining Support Vector Machines with Self-Organizing Feature Map. Vol.5. Intelligent Data Analysis (2001) 339–54
23.Tay F., Cao L.J.: Modified Support Vector Machines in Financial Time Series Forecasting. Vol.48. Neurocomputing(2002) 847–61
24.Min, J.H., Najand, M.: A Futher Investigation of the Lead-Lag Relationship between the Spot Market and Stock Index Future: Early Evidence From Korea. Journal of Futures Markets, Vol. 19. John Wiley & Sons, New Jersey(1999) 217-232
25.Dickinson, D.G.: Stock Market Integration and Macroeconomic Fundamentals: An Empirical Analysis. Applied Financial Economics, Vol. 10. Routledge part of the Taylor & Francis Group, Philadelphia(2000) 261-276
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top