|
References 1.Black, A.J., Mcmillan, D.G.: Non-linear Predictability of Value and Growth Stocks and Economic Activity. Journal of Business Finance & Accounting, Vol.31. Blackwell Publishing, Oxford(2004) 439-474 2.Lo, A., Mamaysky, H., Wang, J.: Foundations of Technical Analysis: Computational Algorithm, Statistical Inference, and Empirical Implementation. The Journal of Finance, Vol. 55. Blackwell Publishing, Oxford(2000) 1705-1765 3.Lo, A.: The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective. Journal of Portfolio Management, Vol. 30. Institutional Investor, NewYork(2004) 15-44 4.Kou, R.J.: A Decision Support System for The Stock Market through Integration of Fuzzy Neural Networks and Fuzzy Delphi. Applied Artificial Intelligence, Vol. 12. Taylor & Francis Group, Philadelphia(1998) 501-520 5.Armano, G., Murru, A., Roli, F.: Stock Market Prediction By A Mixture of Genetic-Neural Experts. International Journal of Pattern Recognition and Artificial Intelligence, Vol. 16. World Scientific Publishing, Singapore(2002) 501-526 6.Matilla-Garcia, G.,Arguellu, C.: A Hybrid Approach based on Neural Networks and Genetic Algorithm to the Study of Profitability in the Spanish Stock Market. Applied Economics Letter, Vol. 12. Routledge part of the Taylor & Francis Group, Philadelphia(2005) 303-308 7.Oh, K.J., Kim, K.J.: Analyzing Stock Market Tick Data Using Piecewise Nonlinear Model. Expert Systems with Application, Vol. 22. Elsevier Science, Oxford(2002) 249-255 8.Azeem, M.F., Hanmandlu, M., Ahmad, N.: Evolutive Learning Algorithm for Fuzzy Modeling. International Journal of Smart Engineering System Design, Vol. 5. Taylor & Francis Group, Philadelphia(2003) 205-224 9.Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting Stock Market Movement Direction with Support Vector Machine. Computers and Operations Research, Vol. 32. Elsevier Science, Oxford(2004) 2513-2522 10.Yu, L., Wang, S., Lai, K.K.: Mining Stock Market Tendency Using GA-Based Support Vector Machines. Lecture Notes in Computer Science, Vol. 3828. Springer-Verlag, Berlin Heidelberg(2005) 336-345 11.Schwert, G.W.: Why Does Stock Market Volatility Change Over Time. The Journal of Finance, Vol. 44. Blackwell Publishing, Oxford(1989) 1115-1167 12.Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines. Cambridge University, New York(2000) 13.Noever, D., Baskaran, S.: Genetic Algorithms Trading on S&P 500. The Magazine of Artificial Intelligence in Finance, Vol. 1. Miller Freeman, San Francisco(1994) 41-50 14.Mahfoud, S., Mani, G.: Financial Forecasting Using Genetic Algorithms. Applied Artificial Intelligence, Vol. 10. Taylor & Francis Group, Philadelphia(1996) 543-565 15.Muhammad, A., King, G.A.: Foreign Exchange Market Forecasting Using Evolutionary Fuzzy Networked. Proc. IEEE 1997 Computational Intelligence for Financial Engineering, March 1997, 213-219 16.Kai, F., Xu, W.: Trading Neural Network with Genetic Algorithms for Forecasting the Stock Price Index. Proc. IEEE 1997 Int. Conf. Intelligent Processing Systems 1, Beijing China, Oct. 1997, 401-403 17.Vapnik V.N.: Statistical Learning Theory. New York: Wiley; 1998. 18.Vapnik V.N.: An Overview of Statistical Learning Theory. IEEE Transactions of Neural Networks, Vol. 10. IEEE(1999) 988–99. 19.Cao L.J., Tay, F.: Financial Forecasting Using Support Vector Machines. Neural Computing Applications, Vol. 10. (2001) 184–92 20.Tay, F., Cao L.J.: Application of Support Vector Machines in Financial Time Series Forecasting. Vol.29. Omega(2001) 309–17 21.Tay, F., Cao L.J.: A Comparative Study of Saliency Analysis and Genetic Algorithm for Feature Selection in Support Vector Machines. Vol.5. Intelligent Data Analysis(2001) 191–209 22.Tay F., Cao L.J.: Improved Financial Time Series Forecasting by Combining Support Vector Machines with Self-Organizing Feature Map. Vol.5. Intelligent Data Analysis (2001) 339–54 23.Tay F., Cao L.J.: Modified Support Vector Machines in Financial Time Series Forecasting. Vol.48. Neurocomputing(2002) 847–61 24.Min, J.H., Najand, M.: A Futher Investigation of the Lead-Lag Relationship between the Spot Market and Stock Index Future: Early Evidence From Korea. Journal of Futures Markets, Vol. 19. John Wiley & Sons, New Jersey(1999) 217-232 25.Dickinson, D.G.: Stock Market Integration and Macroeconomic Fundamentals: An Empirical Analysis. Applied Financial Economics, Vol. 10. Routledge part of the Taylor & Francis Group, Philadelphia(2000) 261-276
|