跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王泰瑞
研究生(外文):Tai-Jui,Wang
論文名稱:以氧化鋁鑭為閘極氧化層製作高性能薄膜電晶體
論文名稱(外文):High-Performance Poly-Silicon TFTs Using LaAlO3 as the Gate Dielectric
指導教授:謝焸家
指導教授(外文):Ing-Jar,Hsieh
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:60
中文關鍵詞:高介電常數材料薄膜電晶體鋁鑭為閘電晶體薄膜鋁鑭為閘介電常數陰極射線非晶矽電流值穩定性閘極氧化層
外文關鍵詞:High-K dielectricTFTgate dielectric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
主動矩陣液晶顯示器﹙AMLCDs﹚因為其輕、薄、低輻射量及低耗電量的種種優點,近年來已經漸漸地取代了傳統的陰極射線管﹙CRT﹚顯示器。主動矩陣液晶顯示器以往都是利用非晶矽薄膜電晶體來當作畫素開關元件。然而如果要把週邊驅動電路一起整合到主動矩陣的玻璃基板上,低溫多晶矽薄膜電晶體肯定是唯一的選擇,這也是近幾年來低溫多晶矽薄膜電晶體一直被廣為研究的主要原因。
本論文成功的將高介電常數的氧化鋁鑭整合至低溫多晶矽薄膜電晶體當作閘極氧化層,而所得到的高驅動電流、低臨界電壓和低次臨界斜率大大提升了元件的性能。不僅如此,也因此而達成高的開/關電流比率及閘極崩潰電場。有別於一般的TFT元件,此種元件並無使用一些介面鈍化處理或是特別的結晶步驟;上述所得之優秀的特性與所使用的閘極氧化層種類有密切關係,因為使用氧化鋁鑭作為閘極氧化層,可造成高閘極電容密度與很小的等效氧化層厚度。
低溫多晶矽薄膜電晶體常用於控制動態矩陣液晶顯示器,然而針對於像素及顯示電路發展高性能的薄膜電晶體,是個很大的挑戰。一般像素的電晶體須操作在高電壓且低閘極漏電的環境下來驅動液晶,但是高速的顯示電路需要電晶體操作在低電壓、高驅動電流且低臨界電壓的環境。而使用氧化鋁鑭為閘極氧化層的薄膜電晶體,可擁有高崩潰電壓及在5V操作可產生高驅動電流的特性。
除此之外,高介電常數(~23)的氧化鋁鑭在CMOS元件的應用中,有著很小的溫度不穩定性及很優良的可靠度;介電常數的增加提升了電容密度,更重要的是使得臨界電壓下降並減少了閘極的漏電,這都是因為閘極氧化層物理厚度增加的緣故。在之前將氧化鋁應用在TFT上的論文內容中已經發表過,由於K值提升使得閘極電容值增加,也進一步地讓臨界電壓的值降低。在本論文中,以氧化鋁鑭為閘極氧化層的薄膜電晶體,顯示出其較低的臨界電壓(約1.2V),不錯的閘極崩潰電場(約6.3MV/㎝),很小的次臨界斜率擺幅(約0.31V/dec),較大的等效載子遷移率(約40㎝2/Vs),和最重要的大開/關電流比率(約1.5×106)及很大的驅動電流值(約21μA/μm)。而以氧化鋁鑭為閘極氧化層之TFT,其較高的崩潰電壓和較高的驅動電流,剛好讓我們聯想到,很符合能應用在像素電晶體及顯示器電路所需要的條件。
Low-temperature poly-Si (LTPS) thin-film transistors (TFTs) are used for active matrix liquid crystal displays (AMLCDs) on glass substrates. However , a difficult technological challenge is to develop high-performance TFTs that are useful for both pixel and display circuits . Pixel TFTs need to operate at high voltages with low gate-leakage currents, to drive the liquid crystal. In contrast, high-speed display circuits require TFTs to operate at low voltages and high drive currents, with a low threshold voltage(Vth). In this letter, we report high-K LaAlO3 gate dielectric TFTs which show a high breakdown voltage and transistor drive current at 5 V. In addition to the very high-K(~23), the LaAlO3 has good device reliability of low bias-temperature instability among high- CMOS devices. The performance is due to the increase, by a factor of Kdielectric/KSiO2, in the gate capacitance density. This lowers the Vth and improves both the gate-leakage current and breakdown field, since the thickness of the high-K dielectric layer can be increased. Although the high-K Al2O3 TFT was previously reported , the relative lower K of 9–10 and gate capacitance have smaller effect to lower down the Vth. The LaAlO3 TFTs showed a low of 1.2 V, a high gate-dielectric breakdown field of 6.3 MV/cm, low subthreshold swing of 0.31 V/dec, high field-effect mobility of 40 cm /Vs, a large on-off-state drive current ratio(Ion/Ioff)of 1.5×106 and high drive current up to 21 A/ m. The high breakdown voltage and high transistor drive current suggest that the LaAlO3 TFTs can meet the device requirements for both pixel and display circuits.
第一章 導論
1.1 薄膜電晶體(TFTs)之技術沿革 P1
1.2 多晶矽『再結晶』的方式 P3
1.2.1 固相結晶法(SPC) P3
1.2.2 雷射結晶法(ELC) P4
1.2.3 金屬誘導側向結晶法(MILC) P5
1.3 高介電常數材料應用於閘極氧化層之技術 P5
1.3.1 介電值與能障高度 P6
1.3.2 閘極邊緣熱穩定性的問題 P7
1.3.3 低介電介面層存在的問題 P7
1.3.4 薄膜型態 P8
1.3.5 製程方式 P8
1.4 金屬閘極技術 P8
1.4.1 功函數 P9
1.4.2 製程匹配性 P9
1.5 研究動機 P9
1.6 論文概要 P10
1.7 參考文獻 P11
第二章 金氧半電容(MIS capacitor)實際製作與量測分析
2.1 MIS電容元件的分析概念 P16
2.1.1 MIS電容的基本理論 P16
2.1.2 電容-電壓特性 P17
2.1.3 MIS電容透過C-V所能提供的電性資料 P22
2.2 MIS電容元件實際製作與量測 P24
2.2.1 晶片清洗 P25
2.2.2 蒸鍍薄膜 P25
2.2.3 薄膜緻密化 P27
2.2.4 製作上電極 P28
2.2.5 圖形定義 P28
2.2.6 蝕刻鋁電極與氧化鋁鑭薄膜 P29
2.2.7 製作下電極 P30
2.2.8 完成 P30
2.3 MIS電容元件電性量測與分析 P31
2.3.1 不同溫度的熱處理製程對磁滯現象的影響 P31
2.3.2 不同溫度的熱處理製程對於反轉區的影響 P34
2.3.3 不同溫度的熱處理製程對於閘極氧化層崩潰電壓的影響 P35
第三章 以氧化鋁鑭作為閘極氧化層製作低溫多晶矽薄膜電晶體
3.1 傳統低溫多晶矽薄膜電晶體元件之特性與結構 P38
3.1.1 特性曲線 P38
3.1.2 臨界電壓 P39
3.1.3 次臨界擺幅 P40
3.1.4 漏電流 P41
3.1.5 等效載子遷移率 P41
3.1.6 熱載子效應與元件可靠度 P42
3.2 以氧化鋁鑭作為閘極氧化層之低溫多晶矽薄膜電晶體製作流程 P43
3.2.1 成長濕氧氧化層以模擬玻璃基板 P43
3.2.2 沉積多晶矽薄膜以當作電晶體之通道 P44
3.2.3 沉積場氧化層(Field Oxide) P45
3.2.4 定義主動區(active region)-第一道光罩 P45
3.2.5 離子佈植與活化(activation) P46
3.2.6 除去場氧化層以沉積閘極氧化層-第二道光罩 P47
3.2.7 沉積閘極氧化層 P47
3.2.8 高介電值材料緻密化製程 P48
3.2.9 蝕刻閘極氧化層以開出源/汲極之接觸洞口-第三道光罩 P48
3.2.10 沉積金屬薄膜作為電極 P49
3.2.11 定義閘極、源極和汲極的電極-第四道光罩 P49
3.2.12 電晶體完成 P50
3.3 以氧化鋁鑭作為閘極氧化層之低溫多晶矽薄膜電晶體電性探討 P50
3.3.1 Id-Vd電晶體特性曲線 P50
3.3.2 Id-Vg特性曲線 P52
3.3.3 元件崩潰電場量測 P53
3.3.4 元件閘極電壓飄移度 P54
3.3.5 各類不同之閘極氧化層特性比較 P55

第四章 結論與未來發展
4.1 結論 P58
4.2 未來發展 P58
[1] T. Nishibe, “Low-temperature poly-Si TFT by excimer laser annealing,”in Proc. Mater. Res. Soc. Symp., vol. 685E, 2001, pp. D6.1.1–D6.1.5.
[2] C. A. Dimitriadis, P. Coxon, L. Dozsa, L. Papaddimitrious, and N.
Economou, “Performance of thin film transistors on polysilicon films
grown by LPCVD at various conditions,” IEEE Trans. Electron Devices,
vol. 39, no. 3, pp. 598–606, Mar. 1992.
[3] C. H. Tseng, T. K. Chang, F. T. Chu, J. M. Shieh, B. T. Dai, H. C. Cheng,and A. Chin, “Investigation of inductively coupled plasma gate oxide on low temperature polycrystalline-silicon thin film transistors,” IEEE Electron Device Lett., no. 6, pp. 333–335, Jun. 2002.
[4] Y. W. Choi, J. N. Lee, T. W. Jang, and B. T. Ahn, “Thin-film transistors fabricated with poly-Si films crystallized at low temperature by microwave annealing,” IEEE Electron Device Lett., vol. 20, no. 1, pp. 2–4,Jan. 1999.
[5] C.W. Lin, M. Z. Yang, C. C. Yeh, L. J. Cheng, T. Y. Huang, H. C. Cheng,H. C. Lin, T. S. Chao, and C. Y. Chang, “Effects of plasma treatments,substrate types, and crystallization methods on performance and reliabilityof low temperature polysilicon TFTs,” in IEDM Tech. Dig., 1999,pp. 305–308.
[6] K. M. Chang, W. C. Yang, and C. P. Tsai, “Electrical characteristics of low temperature polysilicon TFT with a novel TEOS/oxynitride stack gate dielectric,” IEEE Electron Device Lett., vol. 24, no. 8, pp. 512–514,Aug. 2003.
[7] G. K. Guist and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering,” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 925–932, Apr. 1998.
[8] J.-H. Jeon, M.-C. Lee, K.-C. Park, S.-H. Jung, and M.-K. Han, “A new poly-Si TFT with selectively doped channel fabricated by novel excimer laser annealing,” in IEDM Tech. Dig., 2000, pp. 213–216.
[9] C. H. Tseng, C.W. Lin, T. K. Chang, H. C. Cheng, and A. Chin, “Effects of excimer laser dopant activation on the low temperature polysilicon thin-film transistors with lightly doped drains,” Electrochem. Solid-State Lett., vol. 4, pp. G94–G97, Nov. 2001.
[10] D. S. Yu, A. Chin, C. C. Laio, C. F. Lee, C. F. Cheng, W. J. Chen, C.Zhu, M.-F. Li, S. P. McAlister, and D. L. Kwong, “3D GOI CMOSFETs with novel IrO (Hf) dual gates and high-_ dielectric on 1P6M-0.18 m-CMOS,” in IEDM Tech. Dig., 2004, pp. 181–184.
[11] D. S. Yu, K. C. Chiang, C. F. Cheng, A. Chin, C. Zhu, M. F. Li, and D.-L. Kwong, “Fully silicided NiSi:Hf/LaAlO /smart-cut-Ge-on-insulator n-MOSFETs with high electron mobility,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 559–561, Aug. 2004.
[12] C. H. Huang, M. Y. Yang, A. Chin, W. J. Chen, C. X. Zhu, B. J. Cho,M.-F. Li, and D. L. Kwong, “Very low defects and high performance
Ge-on-insulator p-MOSFETs with Al O gate dielectrics,” in Symp. VLSI Tech. Dig., 2003, pp. 119–120.
[13] A. Chin, Y. H.Wu, S. B. Chen, C. C. Liao, andW. J. Chen, “High qualityLa2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5–10_A,” in Symp. VLSI Tech. Dig., 2000, pp. 16–17.
[14] Z. Jin, H. S. Kwok, and M. Wong, “High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators,” IEEE Electron
Device Lett., vol. 19, no. 12, pp. 502–504, Dec. 1998.
[15] S.-W. Lee and S.-K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 4, pp. 160–162, Apr. 1996.
[16] B. Kim, H.-Y. Kim, H.-S. Seo, S. K. Kim, and C. D.Kim, “Surface treatment effect on the poly-Si TFTs fabricated by electric field enhanced crystallization of Ni/a-Si:H films,” IEEE Electron Device Lett., vol. 24,no. 12, pp. 733–735, Dec. 2003.
[17] C.W. Lin, L. J. Cheng, Y. L. Lu, Y. S. Lee, and H. C. Cheng, “High-performance low-temperature poly-Si TFTs crystallized by excimer laser irradiation with recessed-channel structure,” IEEE Electron Device Lett.,vol. 22, no. 6, pp. 269–272, Jun. 2003.
[18] K. M. Chang, W. C. Yang, and B. F. Hung, “High-performance RSD
poly-Si TFTs with a new ONO gate dielectric,” IEEE Trans. Electron
Devices, vol. 51, no. 6, pp. 995–1001, Jun. 2003.
[19] T. Yoshida, K. Yoshino, M. Takei, A. Hara, N. Sasaki, and T. Tsuchiya,“Experimental evidence of grain-boundary related hot-carrier degradation mechanism in low-temperature poly-Si thin-film-transistors,” in IEDM Tech. Dig., 2003, pp. 219–222.
[20] L.L.Kazmerski , Polycrystalline and Amorphous Thin Films and Device , (1980), Acadmic Press.
[21] I.-W.Wu et al , IEEE Electron Device Lett. , Vol. 12 , (1991), pp.181.
[22] A. Pecora et al. , Solid St. Electron, Vol. 38 , (1995), pp.84.
[23] P.Migliorato et al. , Solid St. Electron, Vol. 38 , (1995), pp.2075.
[24] J. Fossum et al. , IEEE Trans. Electron Device , Vol.32 , No.9 ,(1985),pp.1878.
[25] I.-W.Wu et al , IEEE IEDM Tech. Digest , (1990), pp.867.
[26] H.L.Chen et al. , IEEE Trans. Electron Device , Vol.46 , No.4 , (1999),pp.722.
[27] Robertson, J “Electronic structure and band offsets in high K oxides” 1-2 Nov. 2001 Page(s):76 - 77 Digital Object Identifier 10.1109
[28] 半導體元件物理與製作技術(第二版)-施敏 著
[29] LTPS低溫複晶矽顯示器技術-陳志強 著
[30] 半導體製程技術導論-Hong Xiao 著,羅正忠 譯
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top