跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃保嘉
研究生(外文):Pao Chia Huang
論文名稱:壓電陶瓷馬達平台強健軌跡追蹤控制
論文名稱(外文):Piezoelectric Ceramic Motor Table Tracking Control with the KDC Scheme
指導教授:黃啟光黃啟光引用關係
指導教授(外文):Chi Kuang Huang
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:65
中文關鍵詞:壓電陶瓷馬達軌跡追蹤控制強健控制
外文關鍵詞:Piezoelectric ceramic motorTracking control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這研究中,我們考慮壓電陶瓷馬達平台的動態行為來做系統判別,將這平台的運動行為建立出數學模型利用T-S Fuzzy Model的架構來組合,並且使用Lyapunov 穩定定理來設計運動追蹤控制器。在壓電陶瓷馬達平台動態結構的研究上我們考慮了不確定性;由於外部雜訊和不確定性只影響到動態結構,所以我們將動態和運動的控制器分開設計。因此在這篇論文中將提出雙迴圈架構方法來結合運動與強建軌跡追蹤控制。我們設計了觀測器來估測狀態參數,並且用 控制法則來保證在有不確定性下的壓電陶瓷馬達平台系統仍然有強建追蹤性能。
In the study we consider the model of the piezoelectric ceramic motor (PCM) table kinematical behavior to design the kinematical tracking controller by using the Lyapunov stability theorem. Dynamic model of the PCM is studied with consideration of the model uncertainty. Since disturbances and uncertainties have effects only on the dynamic model, the dynamic and kinematical controllers are separately designed. Therefore, the two-loop scheme in thesis, which integrates kinematical controller and robust dynamical tracking controllers.
1 Introduction
2 Linear Piezoelectric Ceramic Motor Table
3 State Space Model
4 Two-Loop Scheme
4.1 linfinite Fuzzy Observer-Based Control Design
4.1.1 Kinematic Control and Dynamic Control Design
4.2 linfinite Performance and Linear Matrix Inequalities
5 Conclusions
Appendix
1. J. K. Hong; C. H. Park; J. S. Lee; K. J. Lim; S. H. Jeong; H. I. Chae, "The trial fabrication and characteristics of linear ultrasonic motor for application to X-Y table", Ultrasonic Symposium, 1999. Proceedings. 1999IEEE, Vol 1,, pp. 683-686 1999
2. J. Maas ; T. Schulte ; N. Frohleke; "Model-based control for ultrasonic motors" IEEE/ASME Trans. on Mechatronics, vol. 5. pp.165-180, June 2000.
3.Ting. Yung, Jeng-Shen. Huang, Fu-Kai Chuang, and Chun-Chung Li,;" Dynamic Analysis and Optimal Design of a Piezoelectric Motor" IEEE. Trans. on Ultrasonics, and Frequency Contrl, vol. 50, pp.601-612.NO. 6, JUNE 2003
4. Y. Lzuno. R. Takeda, and M. Nakaoka. "New fuzzy reasoning-based hig-performance speed/position servo control schemes incorporating ultrasonic motor". IEEE/ASME Trans. on Mechatronics. vol.28.pp.613-618. June 1992
5. T. Senjyu, K Uezato, and H. Miyazato," Adjustable speed contrl of ultrasonic motors by adptive contrl," IEEE/ASME Trans. on power Electrnics, vol. 10,pp532-538, September 1995
6. T. Senjyu, H. Miyazato, S. Yokoda, and K. Uezato," Speed control of ultrasonic motor using neural network" IEEE/ASME Trans. on power Electronics, vol. 13,pp.381-387, May 1998.
7. K. Mainali; S. K. Panda; J.X. Xu; "Position tracking of linear piezoelectric motor using sliding mode control with closed-loop filtering", The 30th Annual Conference of the IEEE industrial Electronics Society, vol.3,pp.2406-2411 , Busan, Korea .November2-6 2004
8. Bore-Kuen Lee, Bor-Sen Chen; "Identification of fuzzy T-S ARMAX models", IEEE Trans. Fuzzy system. pp. 1019-1024 (2004)Li
9. Li-Xin Wang "A Course in Fuzzy Systems and Control", Prentice-Hall International, Inc
10. T. Takagi and Sugeno, " Fuzzy Identification of system and its Applications to Modeling and Control," IEEE Trans. Fuzzy Syst., Man, Cyben., 15(1985), pp. 116-132
11. A. Isdori and A. Asolfi, "Disturbance Attenuation and H_{∞} Control via Measurement Feedback in Nonlinear System," IEEE Trans. Automat. Contr.,37, pp. 1283-1293 (1992)
12. J. A Ball, W. Helton, and M. L. Walker, "H_{∞} Control for Nonlinear System with output Feedback," IEEE Trans. Automat. Contr.,38(1993), 546-559.
13. M. R. James and J. S. Baras," Robust H_{∞} output Feedback Control for Nonlinear systems", IEEE Trans. Automat. Contr.,40, pp. 1007-1017 (1995)
14. Frederick W. Fairman" Linear Control Theory The State Space Approach" , John Wiley & Sone
15. K. Yen; C. Yang; G. Roig,"Linear piezoelectric step motors", Southeastcon'90. Proceedings., IEEE, ,vol.1 pp. 21-29 1990
16. Takano, T.; Tomikawa, Y.; Yaginuma, M.; Ogasawara, T., "A linerly moving ultrasonic motor using alongitudinal and bending milti-mode vibrator" Application of Ferroelecteristics, 1990., IEEE 7th international Symposium on, 1991, pp. 521-524
17. Nanomotion Ltd. HR8 Ultrasonic Motor User Manual. for Wed site: www.nanomotion.com
18. Nanomotion Ltd. AB1A Driver Box User Manual. for Wed site: www.nanomotion.com
19. Lennart Ljung, "System Identification Theory for the User Second Edition". Prentice Hall
20. S. G Gao, N. W. Rees and G. Feng," H-infinity Contro of nonlinear Continuous Time Systems Based on Dynamic Fuaay Model", Int. J System Science, 27 (1996), 821-830
21. B. S Chen, C.-S. Tseng, and H. -J Uang,"Robustness Desing of Nonlinear Dynamic Systems via fuzzy Control," IEEE Trans. Fuzzy Systems, 7, pp. 571-585. (1999)
22. B.-S. Chen, C.-S. Tseng, and H.-J. Uang, " Mixed H₂/H_{∞} Fuzzy Output Feedback Control Design for Nonlinear Dynamic Systems: An LMI Approach," IEEE Trans. Fuzzy Systems,8. pp. 249-265. (2000)
23. T. M. Guerra and L. Vermeriren, "Control Law for Takagi-Sugeno Fuzzy Models" Fuzzy Sets and System,120, pp. 95-108. (2001)
24. Chi-Kuang Hwang; Chih-Hu Wang; Kun-Sheng Bai, "Integration of Kinematical and Robust Dynamical Controllers with Adaptive Fuzzy Elimination Scheme for Wheeled Vehicles Tracking Control", IEEE Trans. Fuzzy Systems, 5. pp. 519-524. (2005)
25. Chi-Kuang Hwang; Bor-Sen Chen; Yu-Te Chang, "Combination of kinematical and robust dynamical controllers for mobile robotics tracking control: (II) suboptimal L₁ control" ,IEEE. Trans. Control Applications. pp. 1211-1216. (2004)
26. Chi-Kuang Hwang; Bor-Sen Chen; Yu-Te Chang,"Combination of kinematical and robust dynamical controllers for mobile robotics tracking control: (I) optimal H_{∞} control", IEEE. Trans. Control Applications, pp. 1205-1210. (2004)
27. K. Tanaka and H. O. Wang, Fuzzy Control Systems design and Analysis: A Linear Matrix Inequality Approcah, John Wiley & Sone, Inc. 2001.
28. S. Boyd, L. EI Ghaoui, E. Feron, and V. Balakrishrnan, Linear Matrix Inequalities in System and Control Theory, vol. 15 Philadelphia: SIAM, 1994
29. P. Gahinet, A Nemirovski, A. Laud, and M. Chilal, The LMI Contrl Toolbox. Natick, MA:The Math Works, Inc.1995
30. Kemin Zbou with John C. Doyle and Keith Glover " Robust and Optimal Control" Prentice Hall
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文