跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李睿哲
研究生(外文):Jui-Che Li
論文名稱:PBG光子晶體光纖的電磁數值模擬
指導教授:吳俊傑吳俊傑引用關係
指導教授(外文):Wu Jin-Jei
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:66
中文關鍵詞:光子晶體光纖PBG光子晶體光纖平面波法時域有限折射率個熱點差分法
外文關鍵詞:PBGPhotonic crystal fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:1
光子晶體光纖與傳統光纖在結構上有著本質的區別,在傳輸特性方面有很多顯著的優點,近幾年成為光通信領域的一個熱點。論文主要從理論上分析了光子晶體帶隙光纖的模場與色散特性。
在分析方法上,採用了平面波法與時域有限差分法。利用平面波法我們分析光子晶體帶隙影響導光的條件,在用其結果利用時域有限差分法,分析光子晶體光纖的模場分佈特點,計算了光子晶體光纖的其場值,求解有效模場面積,有效折射率及色散現象。
由計算的結果發現,當原先的空芯光子晶體光纖在其中心空氣纖芯加入一鍍膜,影響其本身在空芯光子晶體光纖的場,由時域有限差分法可知新的光纖結構可以改變模場及有效折射率的值,其新的結構具有改變頻帶及色散的現象的效果。
Photonic crystal fiber (PCF) is quite different from standard optical; fibers in structure and presents many advantages in optical properties, it has attracted much more attentions in recent years. Modal field and dispersion properties of Photonic Band gap PCF have been theoretically studied in this paper.
Plane Wave Method and compact 2D Finite difference Time Domain (Compact 2D FDTD) to analyze the photonic crystal fibe. In this paper, we present PWM to model PBG PCF, the calculate result are proved to answer Photonic band gap. Then using compact 2D FDTD we answer the field ,field intensity effective index and dispersion
From the calculation result,we discovered When the origin structure PCF, we reconstruction the core center of PCF adding the thin layer of low refractive index structure, It will change the field intensity , using Compact 2D FDTD we known the result the structure will effective effect field intensity more then the original structure and the effective index will change its value. The new PCFs would have the Characteristic wide or narrow the Frequency band in transmission the light through the structure
目錄
中文摘要…………………………………………………… i
英文摘要…………………………………………………… ii
誌謝………………………………………………………… iii
目錄………………………………………………………… iv
表目錄………………………………………………………vii
圖目錄……………………………………………………viii
第一章 序論
1.1 光纖技術的現狀與發展………………………………1
1.2 光子晶體光纖簡介……………………………………………4
1.2.1 光子晶體及帶隙概念……………………………4
1.2.2 光子晶體光纖研究的歷史與現狀………………6
1.2.3 光子晶體光纖的兩種導光機制…………………8
1.3 光子晶體光纖數值計算方法簡介…………………………9
1.3.1 轉移矩陣法………………………………………10
1.3.2 平面波法…………………………………………10
1.3.3 時域有限差分法…………………………………10
1.4 論文的研究重點和內容安排……………………………11
第二章 平面波法與時域有限差分法的基本理論………………13
2.1 平面波法(PWM)基本理論…………………………………13
2.1.1 光子晶體結構的週期性……………………………14
2.1.2 布理淵區……………………………………………14
2.1.3 布洛赫定律…………………………………………15
2.1.4 平面波法(PWM )………………………………………16
2.2 時域有限差分法(FDTD)基本理論…………………………21
2.2.1 有限差分法的基本原理…………………………21
2.2.2 三維FDTD方程式………………………………24
2.2.3 數值穩定與數值色散……………………………28
2.2.4 邊界條件…………………………………………29
2.2.5 激勵源設置………………………………………32
2.3 總結…………………………………………………………33
第三章 折射率變換對PBGFs中心缺陷導光的影響……………34
3.1 中心缺陷導光條件理論分析………………………………34
3.2 完整結構PBGFs帶隙結構的計算…………………………35
3.3 包層結構率變化對光子帶隙的影響的模擬結果與分析…38
3.4 總結…………………………………………………………41
第四章 PBGF波導色散特性的計算模擬結果與討論……………43
4.1 PBG-PCF波導色散表達式………………………………43
4.2 PBG-PCF缺陷態頻率及其波導色散的計算方法………44
4.3 PBGFs的材料色散………………………………………53
4.4 PBG-PCF改變缺陷的條件下的影響……………………54
4.5 PBG-PCF 色散特性在DWDM系統中的應用討論…………59
4.6 總結………………………………………………………60
第五章 結論………………………………………………………61
參考文獻
[1]John S.,”Strong Localization of photons in certain disordered dielectric super lattices”, PhyS. Rev.Lett., 1987,58(23):2486-2489.
[2]Yablonovitch E., “Inhibited sponstaneous emittion in solid-state physics and electronics ”, Phys.Rev Lett,1987,58(20)2059-2061.
[3]Kazuaki Sakoda, Optical properties of photonic crystals Spring-Verlag Berlin Heidelberg,2001 p13
[4]S.T.J.Russell,etal. “Designing a photonic crystal fiber with flattened chromatic dispersion. Electronics Letters”1992.35:325-327.
[5]Knight J C,Birks T A,Russell P St J,Atkin D M.”Pure silica single-mode fiber with hexagonal photonic crystal cladding” postdeadline paper at OFC’96
[6]Knight J C, Broeng J, BirkS T A Russell P St j.”Photonic band gao guideance in optical fibers”, Sience.1998, 282 :1476-1478
[7]R.F.Cregan,etal. “Signal-mode photonic band gap guidance of light in air” Sience, 1999,1537-1539.
[8]Pendry J B, Macknnon A. “Calculation of photonic dispersion relations” Phys. Rev Lett., 1992,69:2772-2775.
[9]Ho K M, Cham C T, Soukoulis C M. “Existence of photonic gap in periodic dielectric structures” Phys. Rev .Lett., 1990,65:3152-3155.
[10] Marko Loncar etal “Design and fabrication of silicon photonic crystal optical waveguide”.Journal of lightwave technology”,2000,18(10):1402-1411
[11] Ho K M. Chen C T, Soukoulis C M. “Existence of a photonic gap in periodic dielectric structures” Phys.Rev.Lett.,1990,65:3152-3155
[12]Pendry J B, Mackinnon A. “Calculation of photon dispersion relations”,Phys. Lett.,1992,69,2772-2775.
[13]F.J.Brechet et al. “Complete analysis of characteristics of propagation into photonic crystal fibers by the finite element method”,Optical Fiber Technology 2000,6:181-191.
[14]Steven G. Johnson and J.D. Joannopoulos,”Block-iterative frequency-domain methods for Maxwell’s equation in a planewave basis” Opt. Exp 8,173-190(2001).
[15]K M Leung, Plane wave calculation of photonic band structures in photonic band gaps and locations, C,M,Soukoulis.ed. Plenum Press NY 1993.
[16]Shangping Guo,”A simple plane wave implementation method for photonic crystal calculations”.
[17]Shangping Guo, and Sacharia Albin,”Simple plane wave implementation method for photonic crystal calculations”,Opt.Exp,.2003,11:167-175
[18] Yee K S “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media”, IEEE Trans. Antennas Propagat., 1996 AP-14:302:307.
[19]Berenger J P “A Perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 1994,114(2):182-200
[20] Berenger J P.”Perfectly matched layer for the FDTD solution of wave-structure interaction problem”IEEE Antennas Propagat,.1996,AP-44(1):100-117.
[21]Taflove A. “Advance in computational electromagnetics: The FDTD method Norwood.”,MA :Artech House,1998.
[22]Sullivan D M”Electromagnetic simulation Using the FDTD Method”, New York:IEEE Press.2000.
[23] Annanmaria Cucimotta. “Peturbation Analysis of Dispersion Properties in Photonic Crystal fibers through the Finite Element Method”,J Lightwaves Tech Vol.20(8) 1433-1442.
[24] Stig E. Barkon,.J Boreng ,and Anders Bjarkiev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect” Opt.Lett.24,46-48(1999)
[25]R.F.Cregan, B,J,Mangan,J,C,Knight. T.A.Birks,P,St,Russell.P.J.Roberts,and D.C.Allance,””Single-mode photonic band gap guidance of light in air” Science. 285,1537-1539(1999)
[26]Shangping Guo, and Sacharia Albin “A sinple plane wave implementation method for photonic crystal calculations” Opt. Exp.11.167-175(2003)
[27]K.M.Leng and Y.F.Liu,”Plane wave calculation of photonic band structures” in photonic band gaps and localizations, C,M,Soukoulis.ed(Plenum Press NY1993)
[28]Jess. Broeng. Strig E. Barkon, Thomas Sondergaard, and Anders Bjarklev
, ”Anaslysis of air-guiding photonic bandgap fibers” Opt. Lett.25,96-98 (2000)
[29] J. Broeng, etal.” Analysis of air-guiding photonic bandgap fibers”,Opt Lett.2000, 25(2):96-98.
[30]Shangping Guo, and Sacharia Albin,”Simple plane wave implementation meth
-od for photonic crystal calculations”Opt. Exp.2003,11:167-175.
[31]Berenger J P.”A Perfectly matched layer for the absorption of electromagnetic waves” J. Comput. Phys,1994,114(2):1850-200
[32]Berenger J P. “Perfectly matched layer for the FDTD solution of wave structure interaction problem”,IEEE Trans .Antenna Propagat .,1996,AP-44(1):110-117.
[33]Min Qiu, Sailing He.”FDTD algorithm for computing the off-plane band structure in a two-dimensional photonic crystal with dielectric or metallic inclusion” Phy.Lett.A278(2001):348-354.
[34]Min Qiu Sailing He “A nonorthogonal finite-difference time domain method for computing the band structure of a two-dimensional photonic crystal with dielectric or metallic inclusion”,Journal of Applied Physics,2000,87(12): 8268-8273
[35] Kazuaki Sakoda. “Numerical study on localized modes in two-dimensional triangular photonic crystal” Journal of Applied Physics,1998,84(3):1210-1214.
[36]Shangping Guo,Sacharia Albin.”Numerical techniques for excitation and analysis of defect modes in photonic crystals”, Opt.Exp.2003,11:80-89
[37]K.Saitoh,M.Koshbia. “Chormatic dispersion control in photonic crystal fibers: application to ultra-fattened dispersion”, Opt Exp.2003,11(8):843-853.
[38]Chui-Sil Kee, etal. “Defect modes in a two –dimensional square lattice of square rods”,Phy. Rev. B,998,58(6):7908-7912
[39] J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal. fibers: A new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330
(1999).
[40] T.A. Birks, J.C. Knight, B.J. Mangan, and P.St.J. Russell, “Photonic crystal fibers: An endless variety,” IEICETrans. Electron. E84-C, 585-592 (2001).
[41]. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[42]. T.A. Birks, J.C. Knight, and P.St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[43] J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fiber,” Science 282, 1476-1478 (1998).
[44] R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, and D.C. Allan, “Single-modephotonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[45] J. Broeng, S.E. Barkou, T. Sndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,”Opt. Lett. 25, 96-98 (2000).
8. F. Benabid, J.C. Knight, G. Antonopoulos, and P.St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[46] D.G. Ouzouno, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch,A.L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic bang-gap fibers,” Science 301,1702-1704 (2003).
[47]. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses inmicrostructured optical fibers,” Opt. Lett. 26, 1660-1662 (2001).
[48] B.T. Kuhlmey, R.C. McPhedran, C.M. de Sterke, P.A. Robinson, G. Renversez, and D. Maystre,“Microstructured optical fibers: where’s the edge?,” Opt. Express 10,1 285-1290 (2002)
[49]D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314-1319 (2002).
[50].B. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt. 42, 634-639 (2003).
[51] K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: pplication to ultra-flattened dispersion,” Opt. Express 11, 843-852 (2003),
[52]G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers:ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003).
[53] K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol.Lett. 15, 236-238 (2003).
[53] N.A. Issa, A. Argyros, M.A. van Eijkelenborg, and J. Zagari, “Identifying hollow waveguide guidance in aircored microstructured optical fibers,” Opt. Express 9, 996-1001 (2003).
[54] S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T.D. Engeness, M. Soljacic, S.A. Jacobs, J.D.Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748-779 (2001).
[55] S.G. Johnson, M. Ibanescu, M.A. Skorobogatiy, O. Weisberg, J.D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[56]. M. Skorobogatiy, S.A. Jacobs, S.G. Johnson, and Y. Fink, “Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates,” Opt. Express 10, 1227-1243 (2002),
[57]. T.D. Engeness, M. Ibanescu, S.G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11, 1175-1196 (2003),
[58] K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
[59] M. Koshiba and Y. Tsuji,”Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737-743 (2000).
[60] M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).
[61] J.A. Weat, N. Venkataraman, C.M. Smith, and M.T. Gallagher, “Photonic crystal fibers,” Proc. European Conf.Opt. Commun., Th.A.2.2 (2001).
[62]. G. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2dn Edition (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top