跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳信宏
研究生(外文):SHIN-HONG,CHEN
論文名稱:無線區域網路應用之5.25GHzCMOS可變增益低雜訊放大器與主動式平衡-非平衡阻抗轉換器設計
論文名稱(外文):Design of A 5.25GHz CMOS Variable-gain Low Noise Amplifier With Active Balun for WLAN Applications
指導教授:田慶誠田慶誠引用關係
指導教授(外文):CHING-CHENG,TIEN
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:67
中文關鍵詞:可變增益阻抗轉換器低雜訊放大器
外文關鍵詞:variable-gainbalunLNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討可變增益低雜訊放大器(VGLNA)與主動式平衡-非平衡阻抗轉換器(Active Balun)之設計,應用於IEEE 802.11a 無線區域網路5GHz CMOS射頻電路。此電路具有三種可調的增益模式,並可提供12 dB之動態範圍。電路模擬在高增益模式下,雙輸出端之有效增益S21∕S31分別為24.306 dB/23.798 dB,雜訊指數為2.507 dB∕2.539 dB,線性度之IP1dB分別為-23.5 dBm∕-24.5dBm,IIP3為-26.377 dBm∕-27.775 dBm;在中增益模式下,雙輸出端之有效增益分別為19.449 dB∕18.942 dB,雜訊指數為2.728 dB∕2.818 dB,線性度之IP1dB分別為-18.5 dBm∕-20.5dBm,IIP3為-21.856 dBm∕-23.145 dBm;在低增益模式下,雙輸出端之有效增益分別為13.531 dB、13.026 dB,雜訊指數為3.459 dB、3.739 dB,線性度之IP1dB分別為-13.5 dBm∕-14.5dBm,IIP3為-16.587 dBm∕-17.714dBm,Gain 與Phase Mismatch分別在1 dB∕3°內,而且維持在預定的規格之下。電路最大消耗功率(Power Consumption)為37.314 mW。電路模擬使用台積電(TSMC)提供的0.18 um CMOS process製程。
This thesis presents design of a 5.25GHz CMOS RFIC of variable-gain low noise amplifier (VGLNA) with active balun for WLAN applications. This work has three stages of the tunable gain to supply system the dynamic range of 12 dB. In the high gain mode, the results of two output ports are simulated 24.306 dB∕23.798 dB with available power gain of S21∕S31, 2.507 dB∕2.539 dB of noise figure, -23.5 dBm∕-24.5dBm of linearity IP1dB, -26.377 dBm∕-27.775 dBm of IIP3. In the medium gain mode, the results of two output ports are simulated 19.449 dB∕18.942 dB with available power gain of S21∕S31, 2.728 dB∕2.818 dB of noise figure, -18.5 dBm∕-20.5dBm of linearity IP1dB, -21.856 dBm∕-23.145 dBm of IIP3. In the low gain mode, the results of two output ports are simulated 13.531 dB∕13.026 dB with available power gain of S21∕S31, 3.459 dB∕3.739 dB of noise figure, -13.5 dBm∕-14.5dBm of linearity IP1dB, -16.587 dBm∕-17.714 dBm of IIP3. The mismatch of gain and phase of two output ports are kept 1 dB∕3°within the predictable of performance. The simulated power consumption of circuit is 37.314 mW. This work is simulated by using the TSMC standard 0.18 μm CMOS technology.
第一章 緒論
1.1 研究動機………………………………………………………...1
1.2 章節規劃………………………………………………………...4
第二章 無線射頻接收機系統架構與規格訂定
2.1 簡介……………………………………………………………...5
2.2 無線射頻接收機系統架構……………………………………...6
2.2.1 超外差式接收機(Super-Heterodyne Receiver)………...6
2.2.2 直接降頻式接收機(Direct-Conversion Receiver)……..8
2.3 無線射頻接收機效能與參數要求…………………………….13
2.3.1 接收機射頻接收相關規範……………………………….13
2.3.2 接收機射頻效能參數與通訊系統規範間之關係……….14
2.3.3 接收機射頻效能參數…………………………………….15
2.3.3.1 雜訊指數(Noise Figure, NF)…………………15
2.3.3.2 交互調變失真(Inter-modulation Distortion, IMD)
與三階截止點(IP3)………………………...21
2.3.3.3 1dB增益壓縮點(1dB Compression Point)…..23
2.4 結論…………………………………………………………….25
第三章 可變增益低雜訊放大器與主動式Balun之設計
3.1 簡介…………………………………………………………….26
3.2 設計流程……………………………………………………….27
3.3 CMOS低雜訊放大器電路架構……………………………….28
3.3.1 簡介………………………………………………………28
3.3.2 共源疊接(Common-Source Cascode)放大器架構……28
3.3.3 CMOS低雜訊放大器雜訊模型…………………………29
3.3.4 最佳電晶體寬度之選擇…………………………………32
3.4 可變增益低雜訊放大器電路與主動式Balun架構…………..34
3.4.1 電路架構比較……………………………………………34
3.4.2 電路架構簡介……………………………………………36
3.4.3 電路設計流程……………………………………………37
3.5 結論…………………………………………………………….43
第四章 模擬結果與量測考量
4.1 簡介…………………………………………………………….44
4.2 鎊線(Bond-wire)與銲墊(PAD)考量……………………44
4.3 輸入端與輸出端外部匹配考量……………………………….47
4.4 雙端輸出埠之非平衡考量…………………………………….48
4.5 三種增益模式模擬結果……………………………………….48
4.5.1 預計規格表……………………………………………....48
4.5.2 高增益模式(High Gain Mode)…………………………49
4.5.3 中增益模式(Medium Gain Mode)……………………51
4.5.4 低增益模式(Low Gain Mode)…………………………53
4.6 後端考量……………………………………………………….57
4.6.1 溫度偏移考量……………………………………………57
4.6.2 製程偏移考量……………………………………………58
4.6.3 鎊線與銲墊效應考量……………………………………60
4.7 量測環境考量………………………………………………….61
4.7.1 量測方式…………………………………………………62
4.7.2 散射係數(S parameter)量測方式……………………62
4.7.3 雜訊指數(Noise Figure)量測方式……………………63
4.7.4 輸入1dB增益壓縮點(IP1dB)量測方式………………63
4.7.5 輸入第三截止點(IIP3)量測方式………………………64
第五章 結論與未來展望
5.1 結論…………………………………………………………….65
5.2 未來展望……………………………………………………….66
參考文獻……………………………………………………………...67
[1]IEEE Std 802.11a/D7.0-1999, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High Speed Physical Layer in the 5GHz Band
[2]R.V. Nee and R. Prasad, OFDM Wireless Multimedia Communication, ArtchHouse, 2000
[3]Liang-Hui Li, “RF System Planning of 802.11a WLAN Receiver and 5GHz CMOS Differential LNA/Mixer Circuit Design,” Department of Electrical Engineering National Cheng Kung University, Tainan, Taiwan, R.O.C. Thesis for Master of Science June, 2002.
[4]B. Razavi, RF Microelectronics. Prentice Hall, Upper Saddle River, NJ, 1998.
[5]A.A. Abidi, “Direct-conversion Radio Transceivers for Digital Communications,” IEEE Journal of Solid-state Circuits, Vol. 30, No. 12,pp.1399-1410, December 1995.
[6]C.Li. Liu, “Impacts of I/Q Imbalance on QPSK-OFDM-QAM Detection,” IEEE Trans. On Consumer Electronics, vol.44, no. 3, pp.984-989, Aug. 1998
[7]ADS Online Manual, Noise Analysis, 2004.
[8]G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, Prentice-Hall, 1984
[9]S. A. Maas, Nonlinear Microwave Circuits, Artech House, 1988
[10]B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[11]Aoki,; Y. Fujii, M.; Ohkubo, S.; Yoshida, S.; Niwa, T.; Miyoshi, Y.; Dodo, H.; Goto, N.; Hida, H., “A 1.4-dB-NF variable-gain LNA with continuous control for 2-GHz-band mobile phones using InGaP emitter HBTs,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2001. Digest of Papers. 2001 IEEE 20-22 May 2001 Page(s):231 – 234
[12]Cassan, D.J.; Long, J.R., “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-/spl mu/m CMOS,” Solid-State Circuits, IEEE Journal of Volume 38, Issue 3, March 2003 Page(s):427 – 435
[13]T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[14]D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. of Solid-State Circuits, vol.32, No. 5, pp. 745-759, May 1997.
[15]Ken Leong Fong; “Dual-Band High-Linearity Variable-Gain Low-Noise Amplifiers for Wireless Applications,” Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International 15-17 Feb. 1999
[16]T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[17]Kwang-Jin Koh, Mun-Yang Park, Yong-Sik Youn, Scon-Ho Han, Jang-Hong Choi, Cheon-Soo Kim, Sung-Do Kim, Hyun-Kyu Yu, “A merged structure of LNA & sub-harmonic mixer for multi-band DCR applications,” Microwave Symposium Digest, 2003 IEEE MTT-S International, Publication Date: 8-13 June 2003
[18]Di Pascoli, S.; Fanucci, L.; Giusti, F.; Neri, B.; Zito, D.; “A single-chip 1.8 GHz image reject RF receiver front-end with boot-strapped inductors,” Dipt. di Ingegneria dell'informazione, Pisa Univ., Italy; This paper appears in: Electronics, Circuits and Systems, 2002. 9th International Conference on Publication Date: 2002 Volume: 1, On page(s): 77- 80 vol.1
[19]F. BRUCCOLERI, E.A.M. KLUMPERINK AND B. NAUTA Mesa Research Institute, “SYSTEMATIC GENERATION OF WIDE BAND CMOS LOW-NOISE AMPLIFIER TOPOLOGIES,” IC-Design Group University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands E-mail: f.bruccoleri@el.utwente.nl
[20]Manh Anh Do ; Wei Meng Lim ; Jian Guo Ma ; Kiat Seng Yeo ; “Design of a Phase Splitter for 3rd ISM Band,” Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore; Electron Devices and Solid-State Circuits, 2003 IEEE Conference on 16-18 Dec. 2003.
[21]M. Rajashekharaiah, P. Upadhyaya, D. Heo, E. Chen, “A New Gain Controllable On-Chip Active Balun for 5GHz Direct Conversion Receiver,” Proceedings, IEEE ISCAS, May 23-26, 2005.
[22]Huainan Ma; Sher Jiun Fang; Fujiang Lin; Nakamura, H.; “Novel Active Differential Phase Splitters in RFIC for Wireless Applications,” Microwave Theory and Techniques, IEEE Transactions on Volume 46, Issue 12, Part 2, Dec. 1998.
[23]Ma, Huainan; Fang, Sher Jiun; Lin, Fujiang; “Accurate and tuneable active differential phase splitters in RFIC wireless applications,” Document Type and Number: United States Patent 6121809, Publication Date: Sep. 19, 2000.
[24]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. International Edition 2001.
[25]Kashiwa, T.; Komaru, M.; Katoh, T.; Yoshida, N.; Tanino, N.; Takagi, T.; Ishihara, O.; “Q-Band Low-Noise Variable-Gain Amplifier MMIC Modules Using Dual-Gate HEMTs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1995. Technical Digest 1995., 17th Annual IEEE 29 Oct.-1 Nov. 1995 Page(s):210 – 213
[26]Schmidt, A.; Catala, S.; “A universal dual band LNA implementation in SiGe technology for wireless applications,” Solid-State Circuits, IEEE Journal of Volume 36, Issue 7, July 2001 Page(s):1127 – 1131
[27]D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. of Solid-State Circuits, vol.32, No. 5, pp. 745-759, May 1997.
[28]袁杰「無線電高頻電路」,全華,ISBN: 957-21-3148-6,民91年9月
[29]Federico Alimenti, Paolo Mezzanotte, Luca Roselli, RobertoSorrentino, “Modeling and characterization of the bonding-wireinterconnection,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no.1, pp. 142-150. January 2001.
[30]K. Mouthaan et al, “Microwave modelling and measurement of the self- and mutual inductance of coupled bondwires,” Proceedings of the 1997 Bipolar/BiCMOS Circuits and Technology Meeting, pp. 166-169,September, 1997.
[31]張忠平,應用於UWB及IEEE 802.11a/b/g之2.4~6GHz CMOS差動式寬頻低雜訊放大器,國立成功大學電機工程研究所碩士論文,民國94年。
[32]CLC5526 Digital Variable Gain Amplifier (DVGA) General Description, National Semiconductor.
[33]HMC318MS8G GaAs Low Noise Amplifier with 5.0-6.0 GHz, Hittite Microwave Corporation.
[34]Bo-Cheng Chen, “A Variable Gain Low Noise Amplifier Design for IEEE 802.11 a 5 GHz U-NII Band,” Department of Electrical Engineering Chung Hwa University, Hsinchu, Taiwan, R.O.C. Thesis for Master of Science July, 2004.
[35]Yong-Seok Hwang and Hyung-Joun Yoo, “A Variable Gain LNA for 5 GHz Band,” System Integration Technology Institute Information and Communications University Daejeon, Korea.
[36]Raja, M.K.; Boon, T.T.C.; Kumar, K.N, “A Fully Integrated Variable Gain 5.75-GHz LNA with on chip Active Balun for WLAN,” Wong Sheng Jau;Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE.
[37]Wei Meng Lim; Han Guo Ma; Manh Anh Do; Kiat Seng Yeo; “A 5GHz to 6GHz Integrated Differential LNA,” Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005.
[38]Manh Anh Do ; Wei Meng Lim ; Jian Guo Ma ; Kiat Seng Yeo ; “Design of a Phase Splitter for 3rd ISM Band,” Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore; Electron Devices and Solid-State Circuits, 2003 IEEE Conference on 16-18 Dec. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top