跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭振益
研究生(外文):HSIAO CHENG YI
論文名稱:群組裂紋葉片振動特性之探討
論文名稱(外文):The crack effects to the vibration behavior of large size turbine blades
指導教授:陳 精 一
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:陳 精 一
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在針對渦輪機械群組裂紋葉片振動特性之探討。裂紋不僅影響葉片本身的動態特性,甚至影響群組葉片系統的動態特性。因群組葉片系統為一週期性葉片系統,一旦系統中任意一葉片產生了裂縫,可能導致群組系統發生振動現象,此時系統的振動能量與應力會集中在裂紋葉片附近,使系統因此而破壞。本文將對此裂紋現象與其造成不穩定現象加以探討。藉由漢米爾頓原理(Hamilton’s principle)來推導其運動方程式與邊界條件,並使用數學模式及MATLAB套裝軟體分析之結果比較,來印證系統之數學模組所得之數值近似解的合理性。

群組葉片之數學模式,考慮葉片群組根部具有線性及旋轉彈性效應,護環位於自由端,葉片為尤拉樑假設,以連續性之能量法及變分學理論,建立該結構模向振動之運動方程式。該運動方程式,可依截面特性採用不同之形狀函數,以求得頻率方程式,如Bessel函數、多項式函數等。數值分析模擬將以長方形截面探討其幾何參數改變對群組葉片結構振動特性之影響。

由於群組葉片之特殊邊界條件,將激發Cantilever mode以及Fixed-Supported mode,故此部份則以研究根部剛性、旋轉與群組葉片數目等效應於Cantilever mode以及Fixed-Supported mode對此系統之振動特性的影響。
The purposes of this thesis are to study the crack effects to the vibration behavior of large size turbine blades. The vibration caused by the crack is not only to effect the dynamic characteristics of the blade, but also the dynamic characteristics of grouped blade system. Because grouped blade system is the periodically coupled blades system, once a crack appears in any blade of it, that will make the system to experience the vibration phenomenon, which causes the vibration energy and stress around the crack of the blade and then destroy the system﹒In this thesis, the dynamic characteristics caused by the crack effects are investigated. The equation of motions and boundary conditions are derived by Hamilton’s principle. The software MATLAB will be used to simulate the mathematical model developed in this thesis.
The crack blade can be considered as two segments of blade. Crack effect is modeled as torsional spring to connect the two segments with proper compatibility conditions.
Because of the special boundary conditions of grouped blade system, the cantilever modes and fixed-supported modes will be excited. Finally, the parameters of crack location, crack length and crack in the blade are considered to elucidate the dynamic behavior of the group blades. Through the combination of exploring process of the analysis, the knowledge are developed and an erected in a manner to upgrade technology in our living.
中文摘要 ……………………………………………………………. I
英文摘要 ……………………………………………………………. II
誌謝 …………………………………………………………………..III
目錄 ………………………………………………………………..…IV
圖目錄 ……………………………………………………………….V
表目錄 ………………………………………………..…………VII
第一章 序論 …………………………………………………………1
1.1 研究動機與目的 ……………………………………1
1.2 文獻回顧 ………………………………………………3
第二章 方形截面樑葉片之群組葉片系統振動分析 ………………7
2.1 前言 …………………………………………………...7
2.2 系統描述與運動方程式推導 …...................................8
2.3 固定截面之群組裂紋葉片分析 …………………….17
2.4 裂紋繞性效應 ……………………………………….22
2.5 群組裂紋葉片系統描述 …………………………….25
第三章 數值分析與探討 …………………………………………..49
3.1 前言 ………………………………………………….49
3.2 葉片幾何與材料參數 ……………………………….49
3.3 數值分析探討 ……………………………………….50
3.4 葉片根部加入彈性效應之群組裂紋葉片分析 …….64
3.5 群組裂紋位於連續第一、二支葉片分析 ………….72
第四章 結果與展望 ………………………………………………..76
參考文獻 …………………………………………………………....79
1.A. G. Erdman and G. N. Sandor, ”Kineto-Elastodynamics – A Review of the State-of-the Art and Trends,” Mechanism and Machine, Vol. 7, pp. 19-33, 1972.
2.G. G. Lowen and C. Chassapis, ” The Elastic Behavior of Linkages; an Update,” Mechanism and Machine Theory, Vol. 21, No. 1, pp. 33-42, 1986.
3.J. S. Roa, ”Natural Frequencies of Turbine Blade – A Survey,” The Shock Vibration Digest, Vol. 5, pp. 3-16, 1973.
4.J. S. Roa, ”Turbomachine Blade Vibration,” The Shock Vibration Digest, Vol. 19, pp. 3-10, 1987.
5.S. M. Yang and S. M. Tsao, ”Dynamics of A Pretwisted Blade Under Nonconstant Rotating Speed,” Computers & Structure, Vol. 62, No. 4, pp. 643-651, 1997.
6.K. B. Subrahmanyam and A. W. Leissa, ”An Improved Finite Difference Analysis of Uncoupled Vibrations of Cantilevered Beams,” Journal of Sound and Vibration, Vol. 98, No. 1, pp. 1-11, 1985.
7.K. B. Subrahmanyam and S. V. Kulkarni, ”Analysis of Lateral Vibrations of Rotating Cantilever Blades Allowing For Shear Deflection and Rotary Inertia by Reissner and Potential Energy Methods,” Mechanism and Machine Theory, Vol. 17, No. 4, pp. 235-241, 1982.
8.K. B. Subrahmanyam, S. V. Kulkarni and JS. Roa, ”Coupled Bending-Bending Vibrations of Pre-Twisted Cantilever Blading Allowing For Shear Deflection and Rotary Inertia By The Reissner Method,” Int. J. Mech. Sci., Vol. 23, No. 9, pp. 517-530, 1981.
9.F. Sisto and A. T. Chang, ”A Finite Element for Vibration Analysis of Twisted Blades Based on Beam Theory,” AIAA, Vol. 22, No. 11, pp. 1646-1651, 1984.
10.B. Downs, ”Vibration Analysis of Turbomachinery Blades Using Dedicated Discretization and Twisted Beam Theory,” Journal of Mechanical design, Vol. 102, pp. 574-578, 1980.
11.A.V. K. Murthy and S. S. Murthy, ”Finite Element Analysis of Rotors,” Mechanism and machine Theory, Vol. 12, No. 4, pp. 311-322, 1977.
12.J. S. Roa and S. Banerjee, ”Coupled Bending-Torsional Vibrations of Rotating Cantilever Blades - Method of Polynomial Frequency Equation,” Mechanism and Mechine Theory, Vol. 12, pp. 271-280, 1977.
13.M. A. Prohl, ”A Method for valculating Vibration Frequency and Stress of a Banded Group of Turbine Buckets,” Trans. ASME, Vol. 80, pp.169, 1958.
14.F. L.Weaver, and M. A., Prohl, ”High Frequency Vibration of Steam Turbine Buckets,” Trans. ASME, Vol. 80, pp.181, 1958.
15.B. R. Singh, and N. S., Nandeeswariah, ”Vibration Analysis of Shrouded Turbine Blades,” J. Inst Engr. Ind., Vol. 40, pp16, 1959.
16.J. S., Roa, Blade Group Forced Vibration – Computer Program, Tech. Memo. 76 WRL M23, Rochester Institute of Technology, Rochester, New York, 1976.
17.L. F. Wagner and J. H. Friffin, ”A Continuous Analog Model for Grouped-Blade Vibration,” Journal of Sound and Vibration, Vol. 165(3), pp. 421-438, 1993.
18.D. L. Thomas, ”Standing Waves in Rotationally Periodic Structures,” Journal of Sound and Vibration, Vol. 37, pp.288-290, 1974.

19.D. L. Thomas, ”Dynamics of Rotationally Periodic Structures,” International Journal of Numerical Methods in Engineering, Vol. 14, pp.81-102, 1979.
20.R. J. Ortolano, J. A. LaRosa and W.P. Welch, ”Long Arc Shrouding-A Reliability Improvement for Untuned Steam Turbine Blading,” Journal of Engineering for Power, Vol. 103, pp. 522-531, 1981.
21.M. Sabuncu and J. Thomas, ”Vibration Characteristic of Pretwisted Aerofoil Cross-Section Blade Packets Under Rotating Conditions,” AAIA Journal, Vol. 30, NO. 1, pp.241-250, 1992.
22.J. Thomas and M. Sabuncu, ”Dynamic Analysis of Rotating Asymmetric Cross-Section Blade Packets,” ASME, paper 79-DET-93, 1979.
23.J. Thomas and M. Sabuncu, ”Finite Element Analysis of Rotating Pretwisted Asymmetric Cross-Section Blades,” ASME, paper 79-DET-95, 1979.
24.A. L. Deak, and R. D., Baird, ”A Procedure for Calculating the Frequencies of Steam Turbine Exhaust Blades,” Trans. ASME, Vol. 85, pp. 324, 1963.
25.J. S., Rao, ”Application of Variational Principle to Shrouded Turbine Blades,” Proc. 19th Cong. ISTAM, pp. 93, 1974.
26.J. Thomas, and H.T., Belek, ”Free Vibrations of Blade Packets,” J. Mech. Engr. Sci., Vol. 19 (1), pp. 13, 1977.
27.A. L. Salama, and M., Petyt, ”Dynamic Response of Packets of Blades by the Finite Element Method,” J. Mech. Des., Trans. ASME, Vol. 100 (4), pp. 660, 1978.
28.A.V., Srinivasan, S.R., Lionberger, and K.W., Brown, ”Dynamic Analysis of an Assembly of Shrouded Blades Using Component Modes,” J. Mech. Des., ASME, Vol. 100 (3), pp. 520, 1978.

29.P. Nagarajan and R. S. Alwar, ”A Three Dimensional Approach to Blade Packet Vibrations,” Journal of Sound and Vibration, Vol. 95(3), pp. 295-303, 1984.
30.L. F. Wagner and J. H. Griffin, ”Forced Harmonic Response of Grouped Blade System: Part Ⅰ- Discrete Theory,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 118, pp.130-136, 1996.
31.L. F. Wagner and J. H. Griffin, ”Forced Harmonic Response of Grouped Blade System: Part Ⅱ- Application,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 118, pp.137-145, 1996.
32.陳精一、涂聰賢 葉片轉盤結構循環對稱動態分析  ,ANSYS user conference , pp.84~98, 1996.
33.余仁方,  小型軸流式壓縮機葉片氣動參數與轉盤結構影響之研究  , 中華工學院碩士論文, June 1995.
34.陳精一、涂聰賢,  葉片結構動態分析及數學模式之探討  , 中國機械工程師學術研討會論文集, 1995.
35.劉恒良,  小型軸流式壓縮機葉輪結構分析模組網格策略探討  , 中華工學院碩士論文, June 1997.
36.蔡國忠、孫仲宏, ”Mesh Density Effects on Vibration Behavior of Turbine Blades,” ANSYS User’s Conference, pp.185-193, 1998.
37.倪慶羽,  群組葉片振動特性探討  , 中華大學碩士論文, June 1999.
38.H., Liebowitz, H., Vandervelt, and D.W., Harris,”Carrying capacity of notched column”,Int. J.Solid Structures, 3, 489-500(1967).
39.H.,Liebowitz,and Jr.W.Claus, D.S.,”Failure of nothed Column”,Engng Fracture Mech.,1, 379-383(1968).
40.H. et al.,Okamura,”A Cracked Column under Compression”,Engng Fracture Mech., 1, 547(1969).
41.A.D.,Dimargonas,” Vibration engineering ” ,West Publishing Company, New York, 1976.
42.A.D., Dimargonas, and S.A., Paipetis,” Analytical methods in Rotor Dynamics ”, Applied Science Publishers LTD , 1983.
43.T. G. Chondros、A. D. Dimarogonas and J. Yao,” A Continuous Cracked Beam Vibration Theory,” No. sv981640, 1998.
44.G. Bamnios and A. Trochides,” Dynamic Behavious of a Cracked Cantilever Beam ”, Applied Acoustics., 45, PP. 97-112, 1995.
45.Murat Kisa,” Free vibration analysis of a cantilever composite beam with multiple cracks ” ,Composites Science and Technology., 64, PP. 1391-1402, 2004.
46.M. Kisa and Brandon,” The Effects of Closure of Cracks on The Dynamics of a Cracked Cantilever Beam ”,Journal of Sound and Vibration., 238(1), PP. 1-18, 2000.
47.黃冠璋,  裂紋與移動質量對懸臂樑振動與疲勞之影響  , 中原大學碩士論文, June 2003.
48.張勝榮,  裂軸之彎曲與扭轉振動耦合分析  , 中原大學碩士論文, June 2001.
49.J. S. Rao, ”Turbomachine blade Vibration,” John Willey & Sons, New York, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top