(54.236.58.220) 您好!臺灣時間:2021/02/28 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張立言
研究生(外文):Li-Yen Chang
論文名稱:鋁合金蜂巢板承受彎矩負荷下之靜態及疲勞強度實驗與分析
論文名稱(外文):Experimental Analysis on The Static and Fatigue Strength for Aluminum Honeycomb Sandwich Strctures under Bending Loading
指導教授:任貽明
指導教授(外文):Yi-Ming Jen
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:鋁合金蜂巢板四點彎矩疲勞壽命有限元素法極限強度
外文關鍵詞:Honeycomb Sandwich PlateFour-Point BendingFatigue LifeFinite Element MethodUltimate Strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究對含有上下面板之鋁合金蜂巢板,利用四點彎矩實驗研究不同面板厚度、蜂巢高度、蜂巢內徑等參數對蜂巢結構靜態強度及疲勞壽命之影響;並藉由與實驗結果比對找出最適合之疲勞壽命預測模型。本研究首先對不同參數試片進行靜態彎矩實驗,觀察其在承受靜態負載時之破壞型式,得到其靜態極限負荷並記錄局部之變形/應變數據,作為建立比對有限元素模型正確性之依據。由靜態實驗結果顯示蜂巢結構相對密度越高時、蜂巢結構厚度越大時,蜂巢板靜態強度越高;而面板厚度對蜂巢板靜態強度沒有顯著的影響。疲勞實驗將設定六個負荷階進行試驗,負荷階之大小分別為其靜態極限強度之40%、35%、30%、25%、20%及15%。透過疲勞實驗將可得到各不同參數試片之負荷-壽命曲線,並藉此獲得七種參數蜂巢板在承受彎矩負載下之疲勞性質。由疲勞實驗結果顯示:蜂巢結構高度越高、相對密度越大時,蜂巢板的疲勞強度越高;而面板厚度對於蜂巢板強度並無顯著之影響。本研究在疲勞壽命預測部分利用外力負載參數及有限元素分析對蜂巢板的疲勞強度及破壞起始位置進行評估。本研究分別利用全域模型及局部模型對於蜂巢板試片之疲勞壽命進行預測。由比對結果顯示,全域模型參數中考量正規化之外力負荷對於壽命預測有較好之結果。局部參數中考量最大剝離應力參數對於蜂巢板試片的壽命及破壞起始位置預測有較好之結果。
The static and fatigue strength for Aluminum honeycomb sandwich plates under four-point bending were experimentally analyzed in the research. The thickness of face sheet; the height and the size of honeycomb cell were considered as the study parameters in the experimental program. Totally seven different kinds of specimens were designed to study the effect of these parameters on the strength of honeycomb sandwich plates. In the static tests, the ultimate strength, local out-of-plane deformation, and in-plane strain on the face sheet of specimens were measured and recorded. Furthermore, the failure mode and was also observed during the tests. The experimental results of deformation and strain was used to evaluate the accuracy of finite element simulation. The experimental results of static strength was compared with the analytical solutions. In the fatigue tests, five loading levels were chosen as the 40%, 35 %, 30%, 25%, 20% and 15% of the static ultimate strength for each specimens. The loading-life curve were established from the fatigue tests to study the effect of these parameters on the fatigue strength of honeycomb sandwich plates. Global Parameters; such as bending stress, shear stress and normalized load drops were used to predict the fatigue life of all type specimens. The predicted results show that the normalized load drops provide better evaluation than the two parameters do. The local von Mises stress, peeling stress, shear stress and the combination of peeling stress and shear stress were used as the prediction parameters to evaluate the bending fatigue life of honeycomb sandwich plates. The prediction parameter of peeling stress is found to give better prediction results of crack initiation locations and fatigue life than the other parameters do. Finite element analysis was employed to obtain the critical positions for crack initiation and the local stress/strain behavior under cyclic bending loading was used to predict the fatigue life.
中文摘要 I
英文摘要 II
目 錄 IV
表目錄 VI
圖目錄 VII
符號說明 XI
第一章 序論 1
1-1 引言 1
1-2 研究內容 2
1-3 本文架構 3
第二章 文獻回顧 4
第三章 實驗內容與程序 8
3-1 研究對象 8
3-2 儀器介紹 9
3-3 實驗步驟與內容 11
3-3-1四點彎矩靜態實驗 11
3-3-2四點彎矩疲勞實驗 12
第四章 鋁合金蜂巢板之靜態強度與疲勞壽命預測理論分析 23
4-1 蜂巢結構靜態極限強度之理論分析 23
4-2 蜂巢結構疲勞壽命預測理論 23
4-2-1 利用鋁合金蜂巢板之全域參數預測疲勞壽命 24
4-2-2 利用鋁合金蜂巢板之局部參數預測疲勞壽命 27
第五章 有限元素分析 33
5-1 有限元素模型介紹 33
5-1-1 材料性質 34
5-1-2 邊界條件與負載條件 35
第六章 結果與討論 48
6-1 鋁合金蜂巢板之靜態實驗及強度預測結果 48
6-2 蜂巢板試片之疲勞實驗及預測結果 49
6-2-1 外力負載對疲勞壽命之影響 50
6-2-2 全域參數之疲勞壽命預測結果 50
6-2-3 局部參數之疲勞壽命預測結果 52
6-2-4 局部參數之破壞起始位置預測結果 53
第七章 結 論 109
參考文獻 111
1.L. J. Gibson, and M. F. Ashby, “Cellular Solids” Cambridge, 1988.
2.G. Shi, and P. Tong, “Equivalent Transverse Shear Stiffness of Honeycomb Cores,” International Journal of Solids and Structures, Vol. 32, Issue 10, pp.1383-1393, May 1995.
3.J. M. Albuquerque, M. F. Vaz, and M. A. Fortes, “Effect of Missing Walls on the Compression Behaviour of Honeycombs,” Scripta Materialia, Vol. 41, Issue 2, pp. 167-174, June 1999.
4.W. Becker, “Closed-Form Analysis of the Thickness Effect of Regular Honeycomb Core Material,” Composite Structures, Vol. 48, Issues 1-3, pp. 67-70, January-March 2000.
5.M. Doyoyo, and D. Mohr, “Microstructural Response of Aluminum Honeycomb to Combined Out-of-Plane Loading,” Mechanics of Materials, Vol. 35, Issue 9, pp. 865-876, September 2003.
6.M. Y. Yang, and J. S. Huang, “Elastic Buckling of Regular Hexagonal Honeycombs with Plateau Borders Under Biaxial Compression,” Composite Structures, Vol. 71, Issue 2, pp. 229-237, November 2005.
7.S. D. Pan, L. Z. Wu, Y. G. Sun, Z. G. Zhou, and J. L. Qu, “Longitudinal Shear Strength and Failure Process of Honeycomb Cores,” Composite Structures, Vol. 72, Issue 1, pp. 42-46, January 2006.
8.F. J. Plantema, “Sandwich Construction,” Wiley, 1966.
9.H. G. Allen, “Analysis and Design of Structural Sandwich Panels,” Oxford, 1969.
10.T. Saito, and R. D. Parbery, “Parameter Identification for Aluminum Honeycomb Sandwich Panels Based on Orthotropic Timoshenko Beam Theory,” Journal of Sound and Vibration, Vol. 208, Issue 2, pp. 271-287, November 1997.
11.W. S. Burton, and A. K. Noor, “Structural Analysis of the Adhesive Bond in a Honeycomb Core Sandwich Panel,” Finite Elements in Analysis and Design, Vol. 26, Issue 3, pp. 213-227,June 1997.
12.H. Zhao, and G. Gary, “Crushing Behaviour of Aluminum Honeycombs under Impact Loading,” International Journal of Impact Engineering, Vol. 21, Issue 10, pp. 827-836, November 1998.
13.F. Meraghni, F. Desrumaux, and M. L. Benzeggagh, “Mechanical Behavior of Cellular Core for Structural Sandwich Panels,” Composites Part A: Applied Science and Manufacturing, Vol. 30, Issue 6, pp. 767-779, June 1999.
14.A. Petras, and M. P. F. Sutcliffe, “Failure Mode Maps for Honeycomb Sandwich Panels,” Composite Structures, Vol. 44, Issue 4, pp. 237-252, April 1999.
15.J. K. Paik, A. K. Thayamball, and G. S. Kim, “The Strength Characteristics of Aluminum Honeycomb Sandwich Panels,” Thin-Walled Structures, Vol. 35, Issue3, pp. 205-231, November 1999.
16.S. M. Lee, and T. K. Tsotsis, “Indentation Failure Behavior of Honeycomb Sandwich Panels,” Composites Science and Technology, Vol. 60, Issue8, pp. 1147-1159, June 2000.
17.A. Ural, A. T. Zehnder, and A. R. Ingraffea, “Fracture Mechanics Approach to Face Sheet Delamination in Honeycomb: Measurement of Energy Release Rate of the Adhesive Bond,” Engineering Fracture Mechanics, Vol. 70, Issue 1, pp. 93-103, January 2003.
18.M. Q. Nguyen, S. S. Jacombs, R. S. Thomson, D. Hachenberg, and M. L. Scott, “Simulation of Impact on Sandwich Structures,” Composite Structures, Vol. 67, Issue 2, pp. 217-227, February 2005.
19.J. S. Huang, and J. Y. Lin, “Fatigue of Cellular Materials,” Acta Materialia, Vol. 44, Issue 1, pp. 289-296, January 1996.
20.M. Burman, and D. Zenkert, “Fatigue of Foam Core Sandwich Beam-1: Undamaged Specimens,” International Journal of Fatigue, Vol. 19, Issue 7, pp. 551-561, October 1997.
21.M. Burman, and D. Zenkert, “Fatigue of Foam Core Sandwich Beam-2: Effect of Initial Damage,” International Journal of Fatigue, Vol. 19, Issue 7, pp. 563-578, October 1997.
22.G. Schaffner, X. E. Guo, M. J. Silva, and L. J. Gibson, “Modelling Fatigue Damage Accumulation in Two-Dimensional Voronoi Honeycombs,” International Journal of Mechanical Sciences, Vol. 42, Issue 4, pp. 645-656, April 2000.
23.A. M. Harte, N. A. Fleck, and M. F. Ashby, “The Fatigue Strength of Sandwich Beams With an Aluminium Alloy Foam Core,” International Journal of Fatigue, Vol. 23, Issue 6, pp. 499-507, July 2001.
24. J. S. Huang, and S. Y. Liu, “Fatigue of Honeycombs Under In-Plane Multiaxial Loads,” Materials Science and Engineering A, Vol. 308, Issues 1-2, pp. 45-52, June 2001.
25.N. Kulkarni, H. Mahfuz, S. Jeelani, and L. A. Carlsson, “Fatigue Crack Growth and Life Prediction of Foam Core Sandwich Composites Under Flexural Loading,” Composite Structures, Vol. 59, Issue 4, pp. 499-505, March 2003.
26.ASTM, “Flexure Test of Flat Sandwich Constructions,” C393-62, Annual Book of ASTM Standards, 1980.
27.J. Zhang, and M. F. Ashby, “The Out-of-Plane Properties of Honeycombs,” International Journal of Mechanical and Science, Vol. 34, pp.475-489, 1992.
28.ANSYS Introduction to ANSYS for Release 8.1, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 14. 朱偉康著(1999),「爭取C41SR系統及電子戰之策進作為」,國防雜誌,第十五卷,第五期,第91頁。
2. 14. 朱偉康著(1999),「爭取C41SR系統及電子戰之策進作為」,國防雜誌,第十五卷,第五期,第91頁。
3. 55. 陳勁甫(1999),「資訊時代的戰爭與軍事革命」,國防雜誌,第十五卷,第六期,第15-16頁。
4. 55. 陳勁甫(1999),「資訊時代的戰爭與軍事革命」,國防雜誌,第十五卷,第六期,第15-16頁。
5. 65. 曾國雄、鄧振源(1989),「層級分析法(AHP)的內涵特性與應用」,中國統計學報,第二十七卷,第六期,第45-67頁。
6. 65. 曾國雄、鄧振源(1989),「層級分析法(AHP)的內涵特性與應用」,中國統計學報,第二十七卷,第六期,第45-67頁。
7. 70. 熊昌有(2002),「如何戰場管理」,國防雜誌,第十七卷,第一期,第61頁。
8. 70. 熊昌有(2002),「如何戰場管理」,國防雜誌,第十七卷,第一期,第61頁。
9. 77. 謝鴻進(2003),「以專案管理建構戰場管理模式之研究」,國防雜誌,第十八卷,第十四期,第42-60頁。
10. 77. 謝鴻進(2003),「以專案管理建構戰場管理模式之研究」,國防雜誌,第十八卷,第十四期,第42-60頁。
11. 78. 謝鴻進、安慶安(2003),「第二次波灣戰爭心戰作為之研究」,空軍學術月刊(台北),第五五九期,第18-36頁。
12. 78. 謝鴻進、安慶安(2003),「第二次波灣戰爭心戰作為之研究」,空軍學術月刊(台北),第五五九期,第18-36頁。
13. 79. 謝鴻進、賀力行(2004),「心理作戰在專案管理概念應用之研究」,陸軍月刊(龍潭),第四六七期,第38頁。
14. 79. 謝鴻進、賀力行(2004),「心理作戰在專案管理概念應用之研究」,陸軍月刊(龍潭),第四六七期,第38頁。
15. 80. 謝鴻進、賀力行(2005),「高科技戰爭下資訊心理戰之發展—以美國、中共為例」,陸軍月刊,第四七四期,第69-83頁。
 
系統版面圖檔 系統版面圖檔