跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游添為
研究生(外文):Tien-Wei Yu
論文名稱:軸對稱向量推力噴嘴之視流場觀測與動態特性量測
論文名稱(外文):Flow Visualization and Dynamic Measurement of an Axisymmetic Thrust-Vectoring Nozzle
指導教授:楊一龍
指導教授(外文):Yi-Lung Yang
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:55
中文關鍵詞:向量推力噴嘴軸對稱向量推力邊界層視流場觀測二次流彎管動態量測
外文關鍵詞:Axisymmetic Thrust-Vectoring Nozzleboundary layerSecondary flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究首先以影像擷取系統與氦氖雷射進行穩態與非穩態二維向量噴嘴內部視流場觀測,發現60mm折流板長在30度開度下,其穩態邊界層厚度約佔噴嘴出口流道寬度之30%,而在50度開度下其迴流區佔噴嘴出口流道寬度之45%造成側向力之衰減。在動態觀測上,不同控制頻率下其側向力之大小隨頻率增加而減少乃因氣流並未依折流板之運動而轉向,而停留在較小之角度。本研究第二部份則進一步探討軸對稱向量噴嘴以了解大角度轉向及高頻轉向下之動態特性。目前軸對稱圓管之設計在九十度轉角下仍可保持八成以上之推力,相對於二維向量噴嘴有較佳的轉向能力。而在暫態運動下,軸對稱噴嘴其側向推力改變隨著轉角頻率之增加而達到一個定值,而非如二維向量噴嘴衰減至零。顯示軸對稱噴嘴之損失並不因管壁之不同轉速角頻率而改變。當大角度轉向及高頻率變化下其推力之值趨近一常數而不隨轉角開度而改變。
A flow visualization system was used to investigate the dynamic performance of a two-dimensional nozzle. For the deflect plate at 60mm with turning angel at 30 degree, the recirculation region covers 30 percent of the exit flow area. For a turning angle at 50 degree, the recirculation region extends to 45 percent of the exit flow area. Under a periodic motion of the deflectors, the region of recirculation zone grows up with the turning frequency of the deflectors. At 5 rpm turning frequency of the deflectors, the exit jet becomes almost straight. At high frequency of periodic thrust vectoring, the boundary layer thickness is increased to block the main jet direction from the deflecting angle. Due to the limited turning angle (less than 25 degree) and operating frequency of the two-dimensional thrust-vectoring nozzle, a circular pipe was used to investigate the dynamic response of thrust-vectoring at a larger turning angle. The current circular pipe gives 80 percent of efficiency at 90 degree turning. For a step up/down control of exit turning angle, the measurement on transient thrust follows well with the nozzle exit turning angle. The time delay between the thrust and the step up/down command is negligible. For a periodic opening/closing of the circular pipe, the higher periodic frequency the larger the time delay. Above 3.33 rpm of exit angle changing between 15 degree and 50 degree, the axial thrust and tangential thrust fall to a steady response at 33 degree. For a larger the turning angle, the boundary layer becomes thicker. The exit thrust is more likely to become a steady response at a lower frequency of turning angle.
中文摘要.......................................................i
英文摘要......................................................ii
誌謝..........................................................iii
圖目錄........................................................vi
表目錄.........................................................x
第一章 緒 論.................................................1
1-1 前言.......................................................1
1-2 研究方法與目的..............................................4
1-3 參考文獻....................................................5
1-4 章節大綱....................................................6
第二章 實驗設備與測試平台.........................................7
2-1 實驗設備介紹.................................................7
2-1-1 JPV-300SS軸流式鼓風機.....................................7
2-1-2 推力感應器(Load Cell......................................8
2-1-3 Load cell 訊號放大器.....................................10
2-1-4 五相步進馬達.............................................10
2-1-5 四軸脈波產生控制器.........................................11
2-1-6 伺服馬達.................................................12
2-1-7 資料擷取系統..............................................13
2-1-8 Motorola MC68376 單晶片..................................13
2-1-9 ARTCAM-130MI 影像擷取系統.................................14
2-1-10氦氖雷射(HELIUM-NEON LASERS)..............................15
2-2 二維推力測試平台............................................16
2-3 軸對稱動態彎管噴嘴測試平台之開發..............................17
2-3-1 噴嘴彎管曲率半徑之設計.....................................18
2-3-2 噴嘴控制機構之設計.........................................19
第三章 二維向量噴嘴視流場觀測系統之建立.............................21
3-1 實驗方法....................................................21
3-2 穩態二維噴嘴流場觀測..........................................23
第四章 軸對稱噴嘴之動態量測 .......................................31
4-1 軸對稱噴嘴穩態之量測.........................................31
4-2 軸對稱噴嘴漸開漸關之性能量測..................................32
4-3 軸對稱向量噴嘴週期運動之量測..................................43
第五章 結論與未來工作............................................50
5-1 結論 ......................................................50
5-2 未來工作...................................................51
參考文獻.......................................................53
參考文獻
[1] Gamble, E., DeFrancesco, R., and Haid, D., “Fluidic Nozzle to Improve Transonic Pitch and Thrust Performance of Hypersonic Vehicle,” AIAA-2005-3501, 2005.
[2] Deere, K., Berrier, B., Flamm, J., and Johnson, S., “A Computational Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept,” AIAA-2005-3502, 2005.
[3] Flamm, J., Deere, K., Berrier, B., Johnson, S., and Mason, M., “Fluidic Nozzle to Improve Transonic Pitch and Thrust Performance of Hypersonic Vehicle,” AIAA-2005-3503, 2005.
[4] North, D. M., “Thrust Vectoring Su-37 Demonstrates Agility,” Aviat. Week Space Technology, Vol. 145, No. 11, pp. 24-24, Sep. 9, 1996.
[5]Baer-Riedhart, J.,“NASAX-31 Enhanced Fighter Maneuverability Demonstrator,” NASA, FS-2000-02-009 DFRC ,Feb. 2000.
[6]楊儒銘, “小型渦輪噴射引擎動態性能量測與即時模擬,” 中華大學機航所碩士論文, 2002.
[7]Berrier,B. L., Palcza, J. L., and Richey, G. K., “Nonaxisymmetric Nozzle Technology Program-An overview,” AIAA paper 77-1225, Aug. 1977.
[8]Berrier, B. L., and Re, R. J., “A Review of Thrust-Vectoring Technology Schemes for Fighter Aircraft,” AIAA paper 78-1023 ,July 1978.
[9]Capone, F. J., and Mason, M. L., “Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles with Vectoring and Reversing Capability,” AIAA TP-1224.
[10]Chu, C. W., “Expedient Approach to Nonaxisymmetric Nozzle Performance Prediction,” J. of Aircraft, Vol. 17, No. 2, pp.127-128, Feb. 1980.
[11]梁勝明, “增加戰機功能之向量推力噴嘴性能分析,” 國防工業發展基金會專題研究計畫報告 (80)基金(一)第161號,1993.
[12]梁勝明, “三維高展弦比轉接段向量推力系統之性能與流場分析,” 2003年中國航空太空學會學術研討會,2003.
[13]戴昌賢、厲復霖、苗志銘與孫維新 ,”多維向量推力噴嘴動態性能之數值研究,” 力學, 系列B, 第十五卷, 第一期, pp. 13-23 ,1999.
[14]Yang, Y. L., and Hsu, T. Y., “A Dynamic Model for Two-Dimensional Thrust-Vectoring Nozzles,” AIAA-2005-3505, 2005.
[15]李家崧, “小型渦輪噴射引擎二維向量推力噴嘴之設計與動態模型建立及應用在水平單擺平衡之穩定分析與驗證,” 私立中華大學機械與航空工程研究所碩士論文,2004.
[16]徐才元 ,“向量推力控制器探討與設計參數之分析”, 中華大學機航所碩士論文, 2005.
[17]王立杰, “俄製戰機超級機動性之探討,” 空軍學術月刊, 第526期, Sep. 1990.
[18]王立杰,“向量噴嘴對戰機設計之影響,”空軍學術月刊,第551 期,October.2002.
[19]Rolls-Royce plc, Derby, England, “The Jet Engine,” of Rolls-Royce plc,1986.
[20]Gal-Or, B., “The Fundamental Concepts of Vectored Propulsion,” J. of Propulsion, Vol. 6, No. 6, pp. 747-757, Nov. 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top