跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴俊諺
研究生(外文):Jun Yan Lai
論文名稱:有限元素次結構覆晶球柵陣列構裝體錫球潛變行為分析
論文名稱(外文):Finite Element Sub-modeling Analysis of Creep Behavior in Solder Joint to FC-PBGA Package
指導教授:陳精一陳精一引用關係
指導教授(外文):Ching I Chen
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:144
中文關鍵詞:有限元素分析法覆晶式塑膠球柵陣列熱循環測試潛變
外文關鍵詞:FC-PBGATCTFEMCreepFatigue lifeSub-modeling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文使用有限元素分析法探討三維覆晶式塑膠球柵陣列(FC-PBGA)構裝全域模型在等溫熱循環測試(TCT)下之應力與應變行為,並以次結構模型技術(Sub modeling technique)進一步建立最易破壞的錫球分析錫球潛變行為及疲勞壽命。
在對於錫球的分析研究中,吾人使用Double Power Law Model、Hyperbolic Sine Law Model及Norton’s Model三種潛變模式模擬錫球潛變狀態,並將其結果代入疲勞壽命公式以進行可靠度分析。
最後將所得數據相互比對其趨勢、潛變行為及疲勞壽命,進行分析與討論,讓希望使用此結構之使用者透過事前分析預測其結果、更瞭解此結構之特性,進而對於此類封裝結構進行最佳化設計。
The three dimension of FC-PBGA solder Joint of Thermal Cycling Test analyzed by Finite Element Method was investigated in papers. This papers were used simplified model to study the stress and strain behavior of solder joint in order to decrease the analysis time. A more convenient procedure was used in some paper, we will create a FC-PBGA package global model and use equivalent material property to model the solder bump and solder ball layer in this model, and we can use the sub-modeling approach to create a sub-model and use the displacement result of global model to be sub-model constrains. This approach could let us create a detail structure we didn’t create in global model in sub-model to improve the analysis time and find the similar result with model which create all structure. This kind of procedure can instead of the simplified model and analyze the more
complicated structure.
In this study, we will use this procedure to simulate the stress/strain behavior of 63Sn/37Pb eutectic solder joint for flip-chip plastic ball grid array (FC-PBGA) packages. The solder joint were considered three kinds of creep models and a temperature dependent stress-strain curve in the simulation. In this study, we were compare the mechanical behavior and fatigue life by the different creep model, the layer of solder joint and the
thermal fatigue life prediction models.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
章節目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
符號說明 ⅩⅡ
第一章 緒論 1
1-1 前言 1
1-1-1 電子構裝簡介 1
1-1-2 本文採用封裝型式簡介 7
1-2 研究動機與目的 14
1-3 研究方法 16
1-4 章節概要 19
第二章 文獻回顧 20
第三章 研究方法 24
3-1 有限元素分析 26
3-1-1 全域模型之建立 27
3-1-2 次模型之建立 32
3-1-3 定義材料性質 37
3-1-4 束制條件定義 39
3-1-5 負載條件設定 41
3-1-6 硬體環境 42
3-2 非線性分析理論 42
3-3 潛變模型 46
3-4 疲勞破壞模型 49
3-5 分析種類 51
第四章 結果與討論 53
4-1 全域模型等效層驗證 53
4-2 全域模型結構分析 59
4-3 次模型結構分析 74
4-3-1 球柵陣列層錫球結構分析 81
4-3-2 覆晶封裝層錫球結構分析 100
4-4 疲勞壽命比較 118
第五章 結論 121
參考文獻 123
[1]鐘文仁,陳佑任,「IC封裝製程與CAE應用(修訂版)」,全華科技圖書股份有限公司,2005。
[2]ANSYS users manual 5.1, 1994
[3]洪齊懋,「不同分析條件對電子構裝體在熱衝擊測試下錫球疲勞壽命預測之影響」,碩士論文,中華大學機械與航太工程研究所,2005。
[4]方智凱,「利用等溫及非等溫分析評估覆晶式球柵陣列構裝體在熱循環及熱衝擊下錫球之疲勞壽命」,碩士論文,中華大學機械與航太工程研究所,2004。
[5]J. H. L. Pang, T. H. Low, B. S. Xiong and F. X. Che, “Design For Reliability (DFR) Methodology For Electronnic Packaging Assemblies,” IEEE Electronics Packaging Technology Conference, pp. 470-478, 2003.
[6]Y.-H. Pao, S. Badgley, R. Govila, L. Baumgartner, R. Allor and T. Cooper, “Measurements of Mechanical Behavior of High Lead Lead-Tin Solder Joints Subject to Thermal Cycling,” Journal of Electronic Packaging, Vol. 114, pp. 135-145, 1992.
[7]F. Feustel., S. Wiese. and E. Meusel., ”Time-Dependent Material Modeling for Finite Element Analyses of Flip Chip,” IEEE 50th Electronic Components and Technology Conference, pp. 1548-1553, 2000.
[8]J. H Lau, Y.-H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, New York, 1997.

[9]Rainer Dudek, Margareta Nylen, Andreas Schubert, Bemd Michel, Herbert Reichl, “An Efficient Approach to Predict Solder Fatigue Life and its Application to SM- and Area Array Components,” IEEE Electronic Components and Technology Conference, 1997.
[10]M. Ikemizu, Y. Fukuzawa, J. Nakano, T. Yokoi, K. Miyajima, H. Funakura and E. Hosomi, “CSP Solder Ball Reliability,” IEEE Electronics Manufacturing Technology Symposium, pp. 447-451, 1997.
[11]K. H. Teo, “Reliability Assessment of Flip Chip on Board Connections,” IEEE Electronics Packaging Technology Conference, pp. 269-273, 1998.
[12]J. H. L, Pang and T.-I. Tan, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subjected to Temperature Cycling Loading,” IEEE 48th Electronic Components and Technology Conference, pp. 878-883, 1998.
[13]S. Baba, Q. Wu, E. Hayashi and M. Watanabe, “ Flip-Chip BGA Applied High-Density Organic Substrate,” IEEE 49th Electronic Components and Technology Conference, pp. 243-249, 1999.
[14]Z. Qian, M. Lu, W. Ren and S. Liu, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behavior of Solder and Underfill,” IEEE 49th Electronic Components and Technology Conference, pp. 141-148, 1999.
[15]L. L. Mercado, V. Sarihan, Y. Guo and A. Mawer, ”Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions Advanced Packaging, Vol. 23, pp. 415-420, 2000.

[16]E. T. Ong, A. A. O. Tay and J. H. Wu, “Effect of Delamination on the Thermal Fatigue of Solder Joints in Flip Chips,” ITHERM Thermal and Termomechanical Phenomena in Electronic Systems, Vol. 2, pp. 200-207, 2000.
[17]J. H. L. Pang, C. W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,” Journal of Electronic Packaging, Vol. 29, pp. 997-1002, 2001.
[18]L. Chen, Q. Zhang, G. Wang, X. Xie and Z. Cheng, “The Effect of Underfill and Its Material Models on Thermomechanical Behavior of a Flip Chip Package,” IEEE Transaction Advanced Packaging, Vol. 24, pp. 17-24, 2001.
[19]J. H. L. Pang, D. Y. R Chong and T. H. Low, “Thermal Cycling Analysis of Flip Chip Solder Joint Reliability,” IEEE Transactions Components and Packaging Technology, Vol. 24, Issue 4, pp. 705-712, 2001.
[20]B. Joiner and T. Montes, “ Thermal Performance of Flip Chip Ball Grid Array Packages,” IEEE Semiconductor Thermal Measurement and Management, pp. 50-56, 2002.
[21]Z. Liji, W. Li, X. Xiaoming, and W. Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joint,” IEEE Transactions Electronics Packaging Manufacturing, Vol. 25, pp. 284-288, 2002.
[22]S. Sahasrabudhe, E. Monroe, S. Tandon and M. Patel, “Understanding the Effect of Dwell Time on Fatigue Life of Packges Using Thermal Shock and Intrinsic Material Behavior,” IEEE 53rd Electronic Components and Technology Conference, pp.898-904, 2003.


[23]B. Cheng, L. Wang, Q. Zhang, X. Gao, X. Xie and W. Kempe, “Reliability and New Failure Modes of Encapsulated Flip Chip on Board Under Thermal Shock Testing,” ICEPT Electronic Packaging Technology Proceedings, pp. 416-421, 2003.
[24]S. Moreau, T. Lequeu and R. Jerisian, “Comparative Study of Thermal Cycling and Thermal Shocks Tests on Electronic Components Reliability,” Microelectronics Reliability, Vol. 44, pp. 1343-1347, 2004.
[25]Tong Hong Wang, Yi-Shao Lai, Jenq-Dah Wu, “Effect of Underfill Thermomechanical Properties on Thermal Cycling Fatigue Reliability of Flip-Chip Ball Grid Array.” Journal of Electronic Packaging, Vol. 126, pp.560-564, 2004.
[26]ANSYS® Menu, “Newton-Raphson Procedure”, ANSYS Theory Reference, Reversion 5.5, pp. 15-28-40, 1998.
[27]朱紹鎔譯,「材料力學」, 東華書局, 1982。
[28]L. F. Coffin, Jr., “Fatigue at High Temperature,” Fatigue and Elevated Temperatures, ASTM STP 520, pp. 5-34, 1973.
[29]S. S. Manson, “Thermal Stress and Low Cycle Fatigue,” New York: McGraw-Hill, 1996.
[30]W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joint During Power Cycling,” IEEE Trans. Comp. Hybrids, Manufact. Technol., Vol. CHMT-6, pp. 52-57, 1983.
[31]H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Trans. Comp. Hybrids, Manufact. Technol., Vol. CHMT-9, No. 4, pp. 423-432, 1986.

.

[32]S. Knecht and L. Fox, “Integrated Matrix Creep: Application to Accelerated Testing and Lifetime Prediction,” Solder Joint Reliability: Theory in Application J.H Lau, Ed. New York: Van Nostrand Reinhold, Ch. 16, 1991.
[33]H. L. J. Pang, Y. T. Kowk, and C.W See Toh, “Temperature Cycling Fatigue Analysis of Fine Pitch Solder Joints,” Journal of Electronic Packaging., Vol. 2, pp. 1495-1500, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊