跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁子翔
研究生(外文):Tzu-hsiang Weng
論文名稱:背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究
論文名稱(外文):Characterization of Compositions and Size Distributions of Inorganic Salts and Dicarboxylic Acids in Background and Suburban Aerosols
指導教授:蔡瀛逸蔡瀛逸引用關係
指導教授(外文):Ying -I Tsai
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:181
中文關鍵詞:大氣氣膠二元有機酸
外文關鍵詞:Dicarboxylic Acids
相關次數:
  • 被引用被引用:13
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究探討阿里山背景地區及台南郊區於夏季、秋季非高污染時期、高污染時期及農廢燃燒時期之大氣氣膠無機鹽類及二元有機酸(low-molecular-weight dicarboxylic acids)之組成變異,並探討氣膠之無機鹽類及二元有機酸組成粒徑分布特性。
氣膠SO42-之前趨物SO2之日夜濃度變化,於高污染時期日夜間之SO2濃度均較其他時期為高,濃度分別為32.8±7.6 ug m-3、20.3±7.7 ug m-3,而阿里山背景環境之SO2日夜平均濃度最低,分別為0.15±0.04 ug m-3、0.12±0.06 ug m-3,顯示背景環境之SO2濃度遠低於郊區所受之人為污染排放。
阿里山背景地區之PM2.5氣膠之SO42-、NO3-、NH4+濃度日間比夜間為高,且SO42-濃度最高,再者為NH4+,由於在阿里山區NH4+的前趨物NH3來源豐富,在光化反應下有較高之NH4+濃度表現。而台南郊區夏季及秋季無機鹽類濃度均以SO42-、NO3-及NH4+光化產物為最大量,且秋季非高污染時期SO42-、NO3-及NH4+濃度均高於夏季,又以SO42-的9.67±2.29 ug m-3濃度為最高。而高污染時期氣膠NO3->SO42-,與在夏季與秋季非高污染時期為SO42->NO3-不同,且NO3-濃度表現在農廢燃燒時期與高污染時期,佔PM2.5質量比例在白天分別為19.6%及18.0%,所佔PM2.5 mass的比例最大,顯示高污染及農廢燃燒時期,NO3-對PM2.5 mass的貢獻有明顯增加。此外農廢燃燒污染時期NH4+濃度較高污染時期更高出0.95 ug m-3。
而在阿里山背景地區二元有機酸,以oxalic acid為最大量,succinic acid次之,再者為malonic acid,而二元有機酸均與NH4+具有高度相關性,顯示阿里山之氣膠二元有機酸之生成主要來自自然排放後經光化反應所形成。而台南郊區高污染時期氣膠二元有機酸日夜間濃度有明顯增量,而濃度以oxalic acid>succinic acid>maleic acid,其二元有機酸組成濃度多寡順序與夏季相同,而六種二元有機酸之濃度在日間較夏季及秋季非高污染時高出約2-3倍,農廢燃燒時期,二元有機酸之日夜趨勢與高污染時非常相似,由濃度相關矩陣發現oxalic acid與NH4+、K+相關性為0.72、0.69,這三者的關係比其它大氣時期為高,顯示農廢燃燒氣膠含有大量oxalic acid。
在大氣氣膠濃度粒徑分布上,阿里山背景地區無機鹽類主要波峰分布在0.46-2.4 um的droplet mode、5.7-11.3 um的coarse mode及4-90 nm 的nuclei mode,二元有機酸最主要則是在0.46-2.4 um的droplet mode,且4 nm有最初始二元有機酸微粒之生成,而在台南郊區之氣膠無機鹽類與二元有機酸組成之濃度粒徑分布,由夏季的單峰或雙峰,轉變成秋季的三峰及更多波峰的形態,高污染時的二元有機酸最大濃度波峰集中於0.19-0.32 um的condensation mode,顯示高污染時期氣膠有更明顯的二元有機酸膠凝及光化產物生成貢獻。此外,氣膠succinic acid (C4)及malonic acid (C3)之最大濃度波峰與oxalic acid (C2)不同,秋季非高污染時期及高污染時期之oxalic acid最大濃度波峰往奈米粒徑位移,顯示秋季氣膠oxalic acid是經由C4和C3二元有機酸光化反應後之最後產物。
Abstract
In this research, variations of characteristic composition as well as size distributions of the atmospheric inorganic salts and low-molecular-weight dicarboxylic acids (low-Mw DCAs) in aerosol for the background Ali Mountain and Tainan suburban regions during summer season, the autumn non-serious pollution period, the autumn high pollution period and the agricultural burning period were studied.
During the high pollution period, Tainan has higher concentrations of daytime and nighttime concentrations of SO2, a precursor to the formation of SO42-, than other periods; the daytime and nighttime SO2 concentrations are 32.8±7.6 ug m-3, 20.3±7.7 ug m-3, respectively. The background Ali Mountain region has the lowest daytime (0.15±0.04 ug m-3) and nighttime (0.12±0.06 ug m-3) SO2 concentrations indicating that the background environment SO2 concentration is much lower than man-made pollution emission in Tainan suburban region.
The background daytime concentrations of SO42-, NO3- and NH4+ in PM2.5 aerosols in Ali mountain region are higher than nighttime concentrations. This region is abundant in NH3, which is a precursor of NH4+, leading to relative higher concentrations of NH4+ produced from photochemical reactions. During summer and autumn, Tainan suburban region experiences the maximum quantities of SO42-, NO3- and NH4+ photochemical products while the autumn non-serious polluted season has higher concentrations of SO42-, NO3- and NH4+ than summer with 9.67±2.29 ug m-3 of SO42- being the highest concentration. During the high pollution period, the aerosol has higher NO3- concentration than SO42- that is different from the higher SO42-concentration than NO3- concentration during summer and the autumn non-serious pollution period. The quantity of ratio of NO3- to PM2.5 mass is the highest during high pollution and agricultural waste burning periods; the ratios are 19.6% of the daytime PM2.5 mass during high pollution period and 18.0% of the daytime PM2.5 mass during agricultural waste burning period, respectively. These observations indicate that during the high pollution and the agricultural waste burning periods, the contribution of NO3- to PM2.5 mass apparently increases. Additionally, the NH4+ concentration during the agricultural waste burning period is 0.95 ug m-3 higher than during the high pollution period.
Oxalic acid is the most abundant low-Mw DCAs in the Ali Mountain region followed by succinic acid and malonic acid. These low-Mw DCAs are highly correlated with NH4+ demonstrating that the aerosol low-Mw DCAs in Ali Mountain are the photochemical products from natural emissions. In Tainan suburban region during high pollution period, concentrations of the daytime and nighttime low-Mw DCAs are obviously higher. Similarly, oxalic acid during summer is the most abundant followed by succinic acid and maleic acid. Additionally, daytime concentrations of the six observed low-Mw DCAs are 2 to 3 times higher than those during summer while during agricultural waste burning period, the diurnal variation tendency is quite similar to that during high pollution period. The concentration matrix reveals that the correlation coefficients are 0.72 between oxalic acid and NH4+ and 0.69 between oxalic acid and K+. Since during the agricultural burning period, these three chemical species are more correlated than other seasons and periods indicating that the sol from agricultural waste burning contains a large quantity of oxalic acid.
As the atmospheric particle size distribution is concerned, the Ali Mountain background inorganic salts show droplet mode (concentration peaks between 0.46-2.4 um), coarse mode (concentration peaks between 5.7-11.3 um) and nuclei mode (concentration peaks between 4-90 nm). The low-Mw DCAs are principally droplet mode with concentration peaks in 0.46-2.4 um; the 4 nm peaks shows the beginning formation of low-Mw DCA primary particles. For Tainan suburban region, the particle size distributions for both aerosol inorganic salts and low-Mw DCAs change from single peak or double peaks in summer to triple or multiple peaks in autumn. During the high pollution period, the maximum concentration peaks for low-Mw DCAs dominant in the condensation mode of 0.19-0.32 um. This reveals that particle coagulation and photochemical products contribute to the observed aerosols during the high pollution period. Additionally, the aerosol succinic (C4) and malonic acids (C3) have different maximum concentration peaks from oxalic acid (C2). During the autumn non-serious pollution period and high pollution period, the maximum concentration peak for oxalic acid shifts toward the nanometer range indicating that the autumn sol oxalic acid is an end photochemical product from C4 and C3 low-Mw DCAs.
目錄
摘要 I
Abstract II
致謝 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 大氣氣膠微粒形成機制 3
2-2 大氣氣膠無機鹽類之來源及組成 5
2-2-1 大氣氣膠無機鹽類之粒徑分布 7
2-3 大氣氣膠雲凝結核之特性 9
2-4 大氣氣膠二元有機酸之生成來源 11
2-4-1 大氣氣膠二元有機酸之組成 13
2-4-2 背景地區之二元有機酸之組成特性 15
2-5 大氣氣膠二元有機酸之粒徑分布 17
第三章 研究設備與方法 19
3-1 採樣地點及採樣時間 19
3-1-1 阿里山地理環境 20
3-2 採樣方法與設備 21
3-3 樣品分析方法 25
3-3-1 採樣前後調理 25
3-3-2 大氣氣膠水溶性陰陽離子分析 26
3-3-3 大氣氣膠二元有機酸分析 29
3-3-4 大氣氣膠二元有機酸草酸分析 33
3-3-5 大氣氣膠二元有機酸層析中去除碳酸根之干擾方法 36
第四章 阿里山與台南郊區大氣氣膠氣狀物之差異 44
4-1 季節性之大氣氣狀物變異比較 44
4-2 氣狀物之收集對氣膠成分之影響比較 52
第五章 背景區域與台南郊區大氣氣膠之組成變異 58
5-1 大氣氣膠無機鹽類日夜之變異 58
5-1-1 阿里山PM2.5與PM2.5-10無機鹽類之日夜變異 58
5-1-2 台南郊區夏季與秋季非高污染PM2.5與PM2.5-10無機鹽類之日夜變異 62
5-1-3 台南郊區高污染與農廢污染之PM2.5與PM2.5-10無機鹽類之日夜變異 68
5-2 大氣氣膠二元有機酸之組成變異 75
5-2-1 阿里山PM2.5與PM2.5-10二元有機酸之日夜變異 75
5-2-2 台南郊區夏季與秋季非高污染PM2.5與PM2.5-10二元有機酸之日夜變異 79
5-2-3 台南郊區高污染與農廢污染之PM2.5與PM2.5-10二元有機酸之日夜變異 85
5-3 大氣氣膠無機鹽類與二元有機酸之相關矩陣 91
5-3-1 阿里山背景地區無機鹽類與二元有機酸之相關矩陣 91
5-3-2 夏季及秋季非高污染時期無機鹽類與二元有機酸之相關矩陣 92
5-3-3 高污染時期無機鹽類與二元有機酸之相關矩陣 93
5-3-4 農廢燃燒時期無機鹽類與二元有機酸之相關矩陣 95
5-4 背景地區與台南郊區大氣二元有機酸比例比較 102
5-5 大氣氣膠PM2.5無機鹽類及二元有機酸之濃度分佈比較 105
5-5-1 阿里山與台南郊區夏季PM2.5無機鹽類之濃度分佈比較 105
5-5-2 台南郊區秋季非高污染、高污染及農廢燃燒時期PM2.5無機鹽類之濃度分佈比較 106
5-5-3 阿里山與台南郊區季節性PM2.5二元有機酸之濃度分佈比較 107
5-6 大氣氣膠無機鹽類及二元有機酸濃度百分比 115
5-7 大氣氣膠二元有機酸及無機鹽類組成之主成份因子分析探討 121
5-7-1 大氣氣膠二元有機酸與最大臭氧濃度主成份因子分析探討 129
5-8 大氣氣膠二元有機酸及無機鹽類之區域性比較 132
第六章 背景地區與南台灣季節性變化大氣氣膠之粒徑分布 137
6-1 阿里山大氣氣膠無機鹽類之粒徑分布 137
6-2 阿里山大氣氣膠之二元有機酸之粒徑分布 141
6-3 南台灣郊區大氣氣膠無機鹽類之粒徑分布 144
6-4 南台灣郊區大氣氣膠二元有機酸之粒徑分布 151
6-5 阿里山及台南郊區大氣氣膠質量中位數粒徑分布 158
6-6 大氣氣膠二元有機酸與無機鹽類之粒徑濃度相關矩陣 161
第七章 結論 170
參考文獻 173
參考文獻
1.Bai, H., Lu, C., Chang, K.-F., Fang, G.-C., 2003. Sources of sampling error for field measurement of nitric acid gas by a denuder system. Atmospheric Environment 37, 941-947.
2.Barbouki, H., Liakakou, J., Economou, C., Sciare, J., Smolík, J., Ždímal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., Mihalopoulos, N., 2003. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment 37, 195-208.
3.Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L., 2003. Measurement of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environmenet 37, 2825-2835.
4.Berico, M., Luciani, A., Formignani, M., 1997. Atmospheric aerosol in an urban area-measurements of TSP and PM10 standards and pulomonary deposition assessment. Atmospheric Environment 31, 3659-3665.
5.Blando, J.D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34, 1623-1632.
6.Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. Technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109, D14203.
7.Brook, J.R., Dann, T.F., Burnett, R.T., 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations Journal of the Air and Waste Management Association 47, 2-19.
8.Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997. Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment 31, 2061-2081.
9.Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmospheric Environment 30, 4233-4249.
10.Choi, M.Y., Chan, C.K., 2002. Continuous measurements of the water activities in aqueous droplets of water-soluble organic compounds. Journal of Physical Chemistry A106, 4566-4572.
11.Chow, J.C., Watson, J.G., Fujuta, E.M., Z. Lu., Lawson, D.R., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment 28, 2061-2080.
12.Colbeck, I., Harrision, R.M., 1984. Ozone-secondary aerosol-visibility Relationships in North-West England. Science of the Total Environment 34, 87-100.
13.Cruz, C.N., Pandis, S.N., 1997. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment 33, 2661-2668.
14.Cruz, C.N., Pandis, S.N., 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. Journal of Geophysical Research 103, 13,111-13,123.
15.Dasch, JM., Cadle, S.H., Kennedy, K.G., Mulawa, P.A., 1989. Comparison of annular denuders and filter packs for atmospheric sampling. Atmospheric Environment 23, 2775-2782.
16.Day, D.E., Malm, W.C., Kreidenweis, S.M., 1997. Seasonal variations in aerosol composition and acidity at Shenandoah and Great Smoky Mountains national parks. Journal of the Air and Waste Management Association 47, 411-418.
17.Dockery, D.W., Pope, C.A., 1994. Acute respiratory effects of particulate air Pollution. Annual Reviews of Public Health 15, 107-132.
18.Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 410, 257-259.
19.Grosjean, D., Cauwenberghe, K.V., Schmid, J.P., Kelley, P.E., Pitts, L.N.J., 1978. Identification of C3-C10 aliphatic dicaeboxylic acids in airborne particulate matter. Environmental Science and Technology 12, 313-317.
20.Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid and C2-C3 �-dicarbonyls. Environmental Science and Technology 21, 52-63.
21.Hayami, H., 2005. Behavior of secondary inorganic species in gaseous and aerosol phases measured in Fukue Island, Japan, in dust season. Atmospheric Environment 39, 127-139.
22.Hayasaka, T., Nakajima, S., Ohta, S., Tanaka, M., 1992. Optical and chemical properties of urban aerosols in Sendai and Sapporo, Japan. Atmospheric Environment 26A, 2055-2062.
23.He, L.Y, Hu, M., Huang, X.F., Yu, B.D., Zhang, Y.H., Liu, D.Q., 2004. Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment 38, 6557-6564.
24.Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J,C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030-3040.
25.Huang, X.F., Hu, M., He, L.-Y., Tang, X.-Y., 2005. Chemical characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmospheric Environment 39, 2819-2827.
26.Hudson, J.G., 1992. Cloud condensation nuclei. Journal of Applied Meteorology 32, 596-607.
27.John, W., Wall, S.M., Ondo, J.L., Winklmayr, W., 1990. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment 24, 2349-2359.
28.Jones, D.L., 1998. Organic acids in the rhizosphere—a critical review. Plant and Soil 205, 25-44.
29.Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.
30.Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science and Technology 21, 105-110.
31.Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2235.
32.Kawamura, K., Kasukabe, H., Barrie, L.A., 1996. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: one year of observations. Atmospheric Environment 30, 1709-1722.
33.Kawamura, K., Sakaguchi, F., 1999. Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509.
34.Kawamura, K., Yasui, O., 2005. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment 39, 1945-1960.
35.Kerminen, V.-M., Wexler, A.S., 1995. Growth laws for atmospheric aerosol particle: an examination of the bimodality of the accumulation mode. Atmospheric Environment 29, 3263-3275.
36.Kerminen, V.-M., Teinila, K., Hillamo, R., Pakkanen, T., 1998. Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science 29, 929-942.
37.Kerminen, V.-M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J., 2000. Low-molecular-weight dicarboxylic acid in an urban and rural atmosphere. Journal of Aerosol Science 31, 349-362.
38.Kerminen, V.-M., 2001. Relative roles of secondary sulfate and organics in atmospheric Cloud condensation nuclei production. Journal of Geophysical Research 106, 17321-17333.
39.Khwaja, H.A., 1995. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmospheric Environment 29, 127-139.
40.Koçak, M., Hubilay, N., Mihalopoulos, N., 2004. Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site: implications regarding sources and long-range transport. Atmospheric Environment 38, 2067-2077.
41.Kohler, H., 1936. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society 32, 1152-1161.
42.Langford, A.O., Fehsenfeld, F.C., 1992. The role of natural vegetation as a source or sink for atmospheric ammonia: a case study. Science 255, 581-583.
43.Larson, S.M., Cass, G.R., Grary, H.A., 1989. Atmospheric carbon particles and the Los Angeles visibility problem. Aerosol Science and Technology 10, 118-130.
44.Laschoberf, C., Limbeck, A., Rendl, J., Puxbaum, H., 2004. Particulate emissions from on-road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmospheric Environment 38, 2187-2195.
45.Lee, W.H., Lacobellis, S.F., Somerville, R.C.J., 1997. Cloud radiation forcings and feedbacks: general circulation model tests and observational validation. Journal of Climate 10, 2479-2496.
46.Lee, J.H., Kim, Y.P., Moon, K.-C., Kim, H,-K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635-643.
47.Lightowlers, P.J., Cape, J.N., 1988. Sources and fate of atmospheric HCl in the UK and Western Europe. Atmospheric Environment 22, 7-15.
48.Limbeck, A., Puxbaum, H., 1999. Organic acids in continental background aerosols. Atmospheric Environment 33, 1847-1852.
49.Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C., 2001. Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmospheric Research 35, 1853-1862.
50.Limbeck, A., Yolanda, K., Hans, P., 2005. Gas to particle distribution of low molecular weight dicarboxylic acid at two different sites in central Europe (Austria). Journal of Aerosol Science 36, 991-1005.
51.Lin, J.J., 2002. Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment 36, 1911-1920.
52.Lin, Y.C., Yu, J.Z., 2005. Simultaneous determination of momo and dicarboxylic acids, ω-oxo-carboxylic acids, midchain ketocarboxylic acids and dldehydes in atmospheric aerosol samples. Environmental Science and Technology 39, 7616-7624.
53.Lonati, G., Giugliano, M., Butelli, P., Romele, L., Tardivo, R., 2005. Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment 39, 1925-1934.
54.Lohmann, U., Lesins, G., 2002. Stronger constraints on the anthropogenic indirect aerosol effect. Science 298, 1012-1016.
55.Lundgren, D.A. Burton, R.M.M., 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148.
56.Matsumoto, M., Okita, T., 1998. Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara, Japan. Atmospheric Environment 32, 1419-1425.
57.Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.S., 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research 99, 1347-1370.
58.Mayer, H., 1999. Air pollution in cities. Atmospheric Environment 33, 4029-4037.
59.Moya, M., Castro, T., Zepeda, M., Baez, A., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591.
60.Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isopotic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104.
61.Narukawa, M., Kawamura, K., Li, S.M., Bottenheim, J.W., 2002. Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. Atmospheric Environment 36, 2491-2499.
62.Norton, R.B., 1985. Measurements of formate and acetate in precipitation at Niwot Ridge and Boulder, Colorado. Journal of Geophysical Research 97, 10389-10393.
63.Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
64.Park, S.S., Kim, Y.J., 2004. PM2.5 particles and size-segregated ionic species measured during fall season in three urban sites in Korea. Atmospheric Environment 38, 1459-1471.
65.Peng, C., Chan, C.K., 2001. The water cycles of water soluble organic salts of atmospheric importance. Atmospheric Environment 35, 1183-1192.
66.Peng, C., Chan, M.N., Chan, C.K., 2001. The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. Environmental Science and Techonolog 35, 4495-4501.
67.Possanzini, M., Santis, F., Palo, V., 1999. Measurements of nitric acid and ammonium salts in lower Bavaria. Atmospheric Environment 33, 3597-3602.
68.Reid, J.S.R., Eck, K.T.F., Eleuterio, D.P., 2004. A review of biomass burning emissions, Part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions 4, 5135-5200.
69.Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G., 2002. Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36, 1661-1674.
70.Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27, 1309-1330.
71.Röhrl, A., Lammel, G., 2001. Low-molecular weight dicarboxylic acids and glyoxylic acid: seasonal and air mass characteristics Environmental Science and Technology 35, 95-101.
72.Röhrl, A., Lammel, G., 2002. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples. Chemosphere 46, 1195-1199.
73.Saxena, P., Hildemann, L.M., McMurry. P.H., Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research 100, 18755-18770.
74.Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Wiley, New York 1326pp.
75.Sempere, R., Kawamura, K., 1994. Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosol from urban atmosphere. Atmospheric Environment 28, 449-459.
76.Shulman, M.L., Jacobson, M.C., Charlson, R.J., Synovec, R,E., Young, T.E., 1996. Dissolution behaviour and surface tension effects of organic compounds in nucleating cloud droplets. Geophysical Research Letters 23, 277-280.
77.Sjödin, A., Ferm, M., 1985. Measurement of nitrous acid in urban areas. Atmospheric Environment 19, 985-992.
78.Spengler, J.D., Kourtrakis, P., Dockery, D.W., Raizenne, M., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: air pollution exposures. Environmental Health Perspective 104, 492-499.
79.Spengler, J.D., Brauer, M., Koutrakis, P., 1990. Acid air and health. Environmental Science and Technology 24, 946-956.
80.Stephens, G.L., Tsay, S.C., Stackouse, P.W., Flat, P.J., 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of Atmospheric Science 47, 1742-1753.
81.Sun, J., Ariya, P.A., 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmospheric Environment 40, 795-820.
82.Tolocka, M.P., Solomon, P.A., Mitchell, W., Norris, G.A., Gemmill, D.B., Wiener, R.W., Vanderpool, R.W., Homolya, J.B., Rice, J., 2001. East versus West in the US:Chemical characteristics of PM2.5 during the winter of 1999. Aerosol Science and Technology 34, 88-96.
83.Tsai, Y.I., Cheng, M.T., 1999. Visibility and aerosol chemical compositions near the coastal area in central Taiwan. Science of the Total Environment 231, 37-51.
84.Tsai, Y.I., Lin, Y.H., Lee, S.Z., 2003. Visibility variation with air qualities in the metropolitan area in southern Taiwan. Water Air Soil Pollut. 144, 19-40.
85.Tsai, Y.I., Cheng, M.T., 2004. Characterization of chemical species in atmospheric PM10 aerosols in a metropolitan basin. Chemosphere 54, 1171-1181.
86.Tsai, Y,I., Kuo, S.C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
87.Turnbull, A,B., Harrison, R.M., 2000. Majou component contributions to PM10 composition in the UK atmosphere. Atmospheric Environment 34, 3129-3137.
88.Twomey, S., 1997. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences 34, 1149-1152.
89.US EPA, 1996. Air quality criteria for particulate matter. EPA/600/P-95/001 aF, National Center for Environmental As-sessment, Office of Research and Development, Research Triangle Park, NC.
90.Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density 38, 1235-1246.
91.Wang, G., Huang, L., Gao, S., Wang, L., 2002. Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China. Atmospheric Environment 36, 1299-1307.
92.Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment 36, 1941-1950.
93.Wang, H., Kawamura, K., Shooter, D., 2005. Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: implications for solid fuel combustion. Atmospheric Environment 39, 5865-5875.
94.Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., 1994. Chemical mass balance source apportionment of PM10 during the Southern California air quality study. Aerosol Science and Technology 21, 1-36.
95.Whitby, K. T., Cantrell, B., Fine Particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers (1976)
96.Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment 34, 1641-1653.
97.Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
98.Yao, X., Chan, C.K., Fang, M., Ho, K.F., Lee, S.C., 2003. Characterization of dicarboxylic acids acid in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
99.Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric environment 38, 963-970.
100.Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., Cass, G.R., 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment 39, 3967-3976.
101.Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-853.
102.林銳敏、蔡俊鴻、江鴻龍、林允涵、張凱倫,「二次氣膠粒徑分佈變異特性研究」,第十屆氣膠科技研討會,台中,2003。
103.郭素卿,「南台灣大氣氣膠酸鹼特性及含水率之時空變異研究」,嘉南藥理科技大學環境工程衛生系碩士論文,台南,2003。
104.游智淵、張艮輝,「第三代台灣地區生物源排放量推估模式之建立與應用」,第18屆空氣污染控制技術研討會,台中,2004。
105.張凱倫,「大氣奈米微粒無機鹽類組成特性研究」,國立成奶j學環境工程學系碩士論文,台南,2004。
106.黃香儒,「秋冬季節之大氣氣膠無機鹽類及二元酸之組成及粒徑變異研究」,嘉南藥理科技大學環境工程與科學系,台南,2005。
107.楊奇儒,「積塵在捲揚作用對地面附近大氣粒粒狀物濃度之影響」,國立成奶j學環境工程學系碩士論文,台南,1994。
108.楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性來源分析」,國立中興大學環境工程學系碩士論文,台中,1998。
109.溫育勇,「NO2干擾環形氣固分離器之氣相亞硝酸採樣的誤差」,國立成奶j學環境工程學系碩士論文,台南2002。
110.蔡瀛逸、郭素卿、黃香儒,「大氣二元有機酸之組成粒徑分布與時變異」,第十一屆中華民國國際氣膠科技研討會論文集,第156-161頁,台中,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊