跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅錦忠
研究生(外文):Chin-Chung Lo
論文名稱:都會區在槽式人工溼地淨化生活污水效益之探討-以台南市竹溪為例
論文名稱(外文):Investigation of Municipal Wastewater Treatment Efficiency Using Constructed Wetland Inside a Ditch in City---A Example of Banboo Creek of Tainan
指導教授:荊樹人荊樹人引用關係
指導教授(外文):Shuh-Ren Jing
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:125
中文關鍵詞:汙水處理竹溪人工溼地
外文關鍵詞:Wastewater TreatmentBanboo Creekconstructed wetland
相關次數:
  • 被引用被引用:6
  • 點閱點閱:919
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
竹溪流域集水區位於台南市人口密集的東區,現階段主要弁鈰筋偃ㄔ城炾鴝呇瓣藾P雨水的主要排水渠道,排水區面積約7.44平方公里,總長度約10公里,直接流入台灣海峽。晴天時主要承受家庭污水,水質屬嚴重性污染,日平均排水流量約 23,000~44,000 m3/d。溪岸採混泥土施工,溪底坡度緩和,河深與水流速度單一化,加上水質惡化,因此水域環境之生態景觀條件相當貧乏。竹溪示範性人工溼地系統完成於2004年8月,由環保署提供經費,台南市政府執行建造。濕地系統建構於竹溪現有河岸之水泥河階地,進流部分的竹溪排水,主要設置目標為探討溼地生態工法現地淨化污染性都市排水的可行性及增進都市河川生態多樣性及景觀美化的弁遄A並由試驗結果提出竹溪污染整治的可行性與完整性的生態工法構想。竹溪濕地系統由三個單元串聯所組成,第一單元為表面下流動濕地(SSF,subsurface flow system,長50m,寬4m,200 m2),第二單元為表面流動式系統(FWS,free water surface system,長150m,寬4m,600 m2),第三單元為SSF濕地(長50m,寬4m,200 m2)。濕地植物選擇兼具污染淨化及景觀美化的種類,如莎草、香浦、培地茅、風車草、美人焦。溼地進流水以沉浸式抽水機從竹溪取水,啟動階段(2004年8月至2005年3月)濕地系統進流流量平均控制於76 m3/day,水力負荷為0.076 m3/m2/day,水力停留時間平均為3.81天;之後(2005年3月至2006年3月)進流量提高到平均106 m3/day進行穩定操作階段的操作,此時水力負荷為0.106 m3/m2/day,水力停留時間約為2.69天。
啟動階段人工溼地系統對進流水主要污染物的平均去除效能分別為:總懸浮固體物(TSS) 71% ( 1.69 g/m2/day)、生化需氧量(BOD5) 77% ( 3.12 g/m2/day)、化學需氧量(COD) 58% ( 4.48g /m2/day)、總氮(TN) 20% ( 0.45 g/m2/day)、總磷(TP) -3%( -0.0011 g/m2/day)。穩定操作階段的污染物的平均去除效能分別為:TSS 81% (2.75 g/m2/day)、BOD5 80% ( 4.28 g/m2/day)、COD 51% (4.94 g/m2/day)、TN 31% (1.46g/m2/day)、TP 28%(0.09 g/m2/day)。此結果顯示,人工溼地生態系統需經過一段適應期才能逐漸提升並表現穩定的污染物淨化效能,尤其針對氮磷營養物的去除需更長的適應期。由一階柱塞流反應器模式(first order plug-flow reactor model)估算人工溼地系統啟動階段及穩定操作階段的BOD5去除速率常數平均分別為0.50 1/day(24℃)及0.76 1/day(24℃),相當於或甚至高於一般河川水質自淨模式中的BOD5脫氧速率常數的0.232 1/day(20℃)。此結果顯示人工溼地生態系統的天然淨化弁鄍i能高於河川的自淨弁遄A未來若將竹溪的水泥河階地全面性構築成人工溼地,並均散地分佈溪排水使流經溼地環境,將可有效的提昇竹溪的自淨弁遄A達到全面性水質淨化的目標。
Bamboo Creek, a typical urban river, is originated from the East District of Tainan City and offers an important function as a main drainage for both sewage and storm water runoff from urban areas. Its flow ends at Kun-Shen Bay, having a total length of about 10 km and drainage area of about 7.44 km2. Creek water is seriously polluted by the receiving sewage with a flow rate ranging from 23,000 to 44,000 m3/d when sunny days. The bank and bed of Bamboo Creek are mostly made of concrete; the slope of the creek bed is gentle, thus causing an unchanged water depth and velocity of water flow. Accordingly, ecological diversity and landscape esthetics along the creek are poor. The pilot-scale Bamboo Creek constructed wetland system was built in August 2004 by Tainan City Government under a project financially supported by Environmental Protection Administration. The treatment wetland system was constructed on the concrete bank of the creek and received part of the polluted creek water for purification. The goals of the wetland constructing project are to (1) investigate the performance of the pilot-scale constructed wetland for purification of the Bamboo Creek water, (2) examine the benefit of enhancement of biological diversity and landscape esthetics due to wetland construction, (3) propose feasible approaches for improvement in water quality of the whole Bamboo Creek. The Bamboo Creek wetland system has a channel configuration, which consists of a subsurface flow (SSF) unit (4 m × 50 m), a free water surface flow (FWS) unit (4 m × 150 m), and an SSF unit (4 m × 50 m) connecting in series. Macrophytes with functions of pollutants purification and landscape values, such as cattail, cyperus, vetiver grass, reed, and canna, were planted in wetlands. Creek water was pumped into the front part of the first wetland unit and then flowed through the system by gravity. The flow rate of influent was operated at 76 m3/day in average during the start-up phase from August 2004 to March 2005, and then increased to 106 m3/day in average afterward for a stable phase operation. This hydraulic condition represented an average hydraulic retention time (HRT) of the whole wetland system being 3.81 and 2.69 day for the start-up phase and the stable phase, respectively.
The monitoring results of influent-effluent water quality show that major pollutants in influent were significantly reduced by 71% (1.69 g/m2/day) for total suspended solid (TSS), 77% (3.12 g/m2/day) for biochemical oxygen demand (BOD5), 58% (4.48 g/m2/day) for chemical oxygen demand (COD), and 20% for total nitrogen (TN) in the start-up phase; but, total phosphorous (TP) removal was insignificant. In the stable phase, pollutants removal of the wetland system increased to be 81% (2.75 g/m2/day) for TSS, 80% (4.28 g/m2/day) for BOD5, 51% (4.94 g/m2/day) for COD, 31% (1.46 g/m2/day) for TN, 28%(0.09 g/m2/day) for TP. This founding suggests that constructed wetlands need an adaptation period, approximately 8 months in this study, to achieve a stable treatment performance particularly for nutrient removal. Using first order plug-flow reactor model, BOD5 removal rate constants of the whole wetland system were estimated to be 0.50 1/day (at 24℃) and 0.76 1/day (at 24℃) in the start-up and stable phase, respectively. These values were comparable to or even higher than the value of deoxygenation rate constant, 0.23 1/day (at 20℃), that is normally used in the river water-quality model. This may indicate that a constructed wetland potentially provides higher performance in water quality improvement than a river does. Creation of more wetland zones using the existed creek bank areas is proposed to improve water quality of the whole Bamboo Creek. A cost-effective method to construct wetlands and distribute the creek water in wetlands by gravity is also proposed.
目錄
中文摘要……………………………………………………………………….I
英文摘要………………………………………………………………………III
目錄……………………………………………………………………………V
表目錄………………………………………………………………………..VIII
圖目錄………………………………………………………………………....IX
第一章 前言…………………………………………………………...………1
1.1 研究背景…………………………………………………...……..1
1.2 研究動機……………………………………………………...…..3
1.3 研究目的……………………………………………………….....3
第二章 文獻回顧……………………………………………………………...4
2.1 溼地……………………………………………………………….4
2.1.1 溼地的定義與分類………………………………………….4
2.1.2 溼地的貢獻………………………………………………….8
2.1.3 溼地的價值………………………………………………...13
2.2 溼地的構造……………………………………………………...15
2.2.1 概述………………………………………………………...15
2.2.2 溼地水文…………………………………………………...15
2.2.3 溼地植物…………………………………………………...17
2.3 人工溼地概述…………………………………………………...19
2.3.1 人工溼地的種類…………………………………………...19
2.3.2 人工溼地的發展沿革與應用……………………………...21
2.3.3 人工溼地的淨化機制與弁遄K…………………………...24
2.4 營養鹽在人工溼地的宿命……………………………………...31
2.4.1 營養鹽的分布……………………………………………...31
2.4.2 氮循環……………………………………………………...31
2.4.3 鄰循環……………………………………………………...34
2.5 人工溼地中污染物去除模式…………………………………...35
2.5.1 柱塞流反應模式…………………………………………...36
2.5.2 溫度變化對去除速率的影響……………………………...39
2.6 在槽式人工溼地可行性………………………………………...40
第三章 實驗設施與方法……………………………….................................42
3.1 人工溼地系統….……………………..........................................42
3.1.1 竹溪人工溼地基本架構…………………………………...43
3.1.2 竹溪人工溼地建置………………………………………...44
3.2 操作方法………………………………………………………...54
3.3 水樣採集與水質監測分析...........................................................54
3.3.1 水樣採集...............................................................................54
3.3.2 水質監測與分析...................................................................55
3.3.3 現場監測分析.......................................................................56
3.3.4 水樣分析…………………………………………………...56
第四章 結果與討論………………………………………………………….59
4.1 竹溪人工溼地水質變化………………………………………...59
4.2 竹溪人工溼地水質淨化效能…………………………………...62
4.3 竹溪人工溼地特性……………………………………………...80
4.3.1 竹溪人工溼地水質特性…………………………………...80
4.3.2 竹溪人工溼地植物………………………………………...83
4.4 竹溪人工溼地其它效能評估…………………………………...85
4.4.1 去除速率常數……………………………………………...85
4.4.2 污染負荷與出流濃度、去除速率的關係………………….91
第五章 結論………………………………………………………...............105
第六章 建議………………………………………………………………...108
第七章 參考文獻…………………………………………………………...116

表目錄
表1.1 竹溪水質現況……………………………………………………………2
表2.1 溼地的定義………………………………………………………………5
表2.2 溼地的種類………………………………………………………………7
表2.3 溼地的價值弁遄K……………………………………………………..14
表2.4 國外人工溼地系統的發展沿革………………………………………..22
表2.5 人工溼地的淨化機制與弁遄K………………………………………..26
表2.6 人工溼地的去除機制…………………………………………………..27
表3.1 竹溪人工溼地操作條件………………………………………………..54
表3.2 分析項目及方法………………………………………………………..55
表4.1 在A、B試程中各污染物平均濃度……….……………………………60
表4.2 人工溼地中主要汙染物參數………………………………………….64
表4.3 竹溪人工溼地淹水日程表…………………………………………….82
表4.4 BOD去除速率常數…………………………………………………….85
表6.1竹溪人工溼地拆除工作表…………………………………………….109

圖目錄
圖2.1 溼地水生植物的根區圖………………………………………………..18
圖2.2 自由表面流系統…..................................................................................20
圖2.3 表面下流動系統………………………………………………………..21
圖2.4 人工溼地處理廢水的循環過程………………………………………..31
圖2.5 溼地中氮的循環………………………………………………………..32
圖2.6 溼地中的磷循環………………………………………………………..34
圖3.1 竹溪人工溼地處理系統位置圖………………………………………..42
圖3.2 竹溪人工溼地處理系統流程圖………………………………………..43
圖3.3 竹溪人工溼地處理系統建構前原貌(前半部)………………………...46
圖3.4 竹溪人工溼地處理系統建構前原貌(後半部)………………………...46
圖3.5 現場整地情況………………………………………………………….47
圖3.6 紐澤西護欄設立情況………………………………………………….47
圖3.7 不透水布鋪設情況…………………………………………………….48
圖3.8 SSF系統 蚵殼鋪設情況….....................................................................48
圖3.9 SSF系統 礫石鋪設情況……………………………………………….49
圖3.10 FWS系統 土壤鋪設情況……………………………………………..49
圖3.11 系統進流配管及流量計裝設…………………………………………50
圖3.12 系統間配管……………………………………………………………50
圖3.13 抽水泵浦設置…………………………………………………………51
圖3.13 抽水泵浦設置…………………………………………………………51
圖3.15 電力系統配置…………………………………………………………52
圖3.16 系統植栽………………………………………………………………52
圖3.17植栽後二個月照片…………………………………………………….53
圖4.1 A、B試程,停留時間對總懸浮固體物關係圖…………………….65
圖4.2 A、B試程,時間對總懸浮固體物關係圖………………………….65
圖4.3 A、B試程,停留時間對生化需氧量關係圖…………………………..68
圖4.4 A、B試程,時間對生化需氧量關係圖………………………………..68
圖4.5 A、B試程,停留時間對化學需氧量關係圖…………………………..71
圖4.6 A、B試程,時間對化學需氧量關係圖………………………………..71
圖4.7 A、B試程,停留時間對總磷關係圖…………………………………..74
圖4.8 A、B試程,時間對總磷關係圖………………………………………..74
圖4.9 A、B試程,停留時間對總氮關係圖…………………………………..78
圖4.10 A、B試程,時間對總氮關係圖………………………………………78
圖4.11 A試程中SSF I,BOD5溫度校正係數關係圖……………………….86
圖4.12 A試程中FWS,BOD5溫度校正係數關係圖………………………86
圖4.13 A試程中SSF II,BOD5溫度校正係數關係圖…...…………………87
圖4.14 A試程BOD5溫度校正係數關係圖…………………………………87
圖4.15 B試程中SSF I,BOD5溫度校正係數關係圖………………………89
圖4.16 B試程中FWS,BOD5溫度校正係數關係圖………………………..89
圖4.17 B試程中SSF II,BOD5溫度校正係數關係圖………………………90
圖4.18 B試程,BOD5溫度校正係數關係圖………………………………..90
圖4.19 A試程,TSS污染負荷與出流濃度關係圖…………………………95
圖4.20 B試程,TSS污染負荷與出流濃度關係圖…………………………95
圖4.21 A試程,BOD5污染負荷與出流濃度關係圖………………………96
圖4.22 B試程,BOD5污染負荷與出流濃度關係圖………………………96
圖4.23 A試程,COD污染負荷與出流濃度關係圖.………………………97
圖4.24 B試程,COD污染負荷與出流濃度關係圖………………………97
圖4.25 A試程,TP污染負荷與出流濃度關係圖….......................................98
圖4.26 B試程,TP污染負荷與出流濃度關係圖…………………………...98
圖4.27 A試程,TN污染負荷與出流濃度關係圖…………………………..99
圖4.28 B試程,TN污染負荷與出流濃度關係圖…………………………...99
圖4.29 A試程,TSS污染負荷與去除速率關係圖………………………100
圖4.30 B試程,TSS污染負荷與去除速率關係圖………………………100
圖4.31 A試程,BOD5污染負荷與去除速率關係圖………………………101
圖4.32 B試程,BOD5污染負荷與去除速率關係圖………………………101
圖4.33 A試程,COD污染負荷與去除速率關係圖……………………….102
圖4.34 B試程,COD污染負荷與去除速率關係圖……………………….102
圖4.35 A試程,TP污染負荷與去除速率關係圖………………………….103
圖4.36 B試程,TP污染負荷與去除速率關係圖………………………….103
圖4.37 A試程,TN污染負荷與去除速率關係圖…………………………104
圖4.38 B試程,TN污染負荷與去除速率關係圖………………………….104
1.行政院環保署,2002,中華民國台灣地區環境保護年報。
2.郭清江,2004,生態工法的台灣推手,永續台灣,第四十九期,第40-47頁。
3.生態、環保、健康、綠建材網站:http://www.fuh3.com.tw/ 。
4.周嫦玫、林信輝,2004,都市河川廊道效益與周圍土地利用關聯性之探討-以台中市筏子溪為例,第三屆土地研究學術研討會。
5.IWA Specialist Group on Use of Macrophytes in Water Pollution Constrol., 2000, “Constructed wetlands for pollution control. process, performance, desigen and operation.” IWA publishing, London, UK.
6.Cole, S. 1998. The emergence of the treatment wetlands. Environ. Sci. Technol. 32: 218A-223A.
7.Etnier, C., and Guterstam, B. 1996. Ecological Egineering for Wastewater Treatment. Lewis Publishers.
8.Reed, S. C., R. W. Crites, and E. J. Middlebrooks. 1995. Natural Systems for Waste Management and Treatment. 2nd ed. McGraw-Hill, New York.
9.台南市政府,民國93年3月,台南市綠水文化觀城規劃設計。
10.台南市環境保護局(93年2月)及台南氣象站二月份氣象資料。
11.楊文瑜,1999,「台灣地區溼地規劃管理決策之研究-以關渡和無尾港為例」,碩士論文,國立中山大學海洋環境學系,第1-2~1-3頁,第2-1~2-5頁。
12.于立平,1997,「溼地公園規劃策略之研究-以高雄縣鳥松溼地公園為例」,碩士論文,國立中山大學海洋環境學系,第2-1~2-5頁。
13.Hammer, D. A., 1996, Creating freshwater wetlands, 2nd ed., Lewis.
14.Mitsch, W.J. and Gosselink J.G.,1993, Wetlands 2nd ed., pp.113-119.
15.劉靜靜,1993,台灣海岸濕地保護策略與法制之研究,碩士論文,國立中山大學海洋環境研究所,高雄市。
16.Odum, E.P., 1971, Fundamentals of Ecology. 3rd. ed. W.B. Saundrs. Company, Pholadelphia, London, Toronto.
17.洪國鑫,2002,高水力負荷下溼地污染物模式分析,碩士論文,國立成奶j學環境工程學系,台南市。
18.Hammer D. A. and Bastian R. K., 1989, Wetlands ecosystems: Natural water purifiers?. “Constructed Wetlands for Wastewater Treatment Municipal.” Industrical and Agricultural. pp.5-19.
19.Kadlec, R. H. and Knight, R. L.,1996, Treatment Wetlands. CRC Press/ Lewis Publishers, Boca Raton, Florida., pp.892.
20.謝明奇,2005,自然溼地與人工溼地系統底泥特性之探討,碩士論文,嘉南藥理科技大學環境工程與科學系,台南縣。
21.Brix, H.,1997, “Do macrophytes play a role in constructed treatment wetlands.” Wat. Sci. Tech., Vol. 35, Iss.5, pp.11-17.
22.D‘Angelo E.M. and Reddy K. P., 1994, “Diagenesis of organic matter in a wetland receiving hypereutrophic lake water:II. Role of inorganic electron acceptors in nutrient release.” J. Environ. Qual., Vol.23 , pp.937-943.
23.Kadlec, R.H., 1995, “Overview: surface flow constructed wetlands.” Wat. Sci. Tech., Vol.32, Iss.3, pp.1-124.
24.Zhu T. and Sikora F. J.,1995, “Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands.” Wat. Sci. Tech., Vol.32 , Iss.3 , pp.219-228.
25.Billore, S. K.; Singh, N.; Sharma, J. K.; Dass, P.; Nelson, R. M., 1999, “Horizontal subsurface flow gravel bed constructed wetland with Phragmites karka in Central India.” Wat. Sci. Tech., Vol.40, Iss.3, pp.163-171.
26.USEPA, 2000, Equilibrium Partitioning Sediment Guidelines (ESGs) for the Protection of Benthic Organisms: PAH Mixtures. Off. Sci. Tech., US Environmental Protection Agency, Washington, DC.
27.游程凱,2003,利用穩定塘連接人工溼地處理社區污水效能之探討,碩士論文,嘉南藥理科技大學環境工程與科學系,台南縣。
28.郭文健、陳瑞仁、楊磊,1996,小規模養豬廢戶零排放處理技術之研究,國立屏東科技大學環保系。
29.李志源等人,1997,利用人工溼地三級處理生活污水,國立台灣海洋大學河海工程學系。
30.楊磊,1998,以人工溼地進行高含氯有機物污染場址復育之研究,國科會專題研究計劃報告(NSC87-2211-E-110-003)。
31.Lin, Y. F., Jing, S. R., Lee, D. Y., and Wang, T. W.,2002a, “ Nutrient removal from aquaculture wastewater using a constructed wetlands system.” Aquaculture, Vol.209, Iss.1-4, pp.169-184.
32.Lin, Y. F., Jing, S. R., Lee, D. Y., and Wang, T. W.,2002b, “ Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands.” Environmental pollution, Vol.119, Iss.3, pp.413-420.
33.Lin, Y. F., Jing, S. R., Lee, D. Y., and Wang, T. W.,2002c,“ Removal of solids and oxygen demand from aquaculture wastewater with a constructed wetlands system.” Wat. Environ. Res., Vol.74, Iss.2, pp.136-141.
34.溫清光、楊磊、郭文健、林瑩峰、荊樹人、高志明、李志源、邱文彥、王姿文、李得元,1998-2001,「濕地對於水資源之保育管理及永續利用(I)、(Ⅱ)、(Ⅲ),國科會專題研究計畫報告(NSC88-2621-Z-041-001)。
35.荊樹人、林瑩峰、李得元、吳堅瑜、游程凱、宋金樹、張天化,2001,以實場人工溼地系統直接處理社區污水效能之研究,國科會專題研究計畫報告(NSC-90-2211-E-041-005)。
36.荊樹人、林瑩峰、李得元、游程凱,2004,台南縣二行社區自然淨水系統處理社區污水有機物之探討,嘉南藥理科技大學環境工程與科學系,中華民國環境工程學會之研討會。
37.嘉南藥理科技大學人工溼地研究團隊網站: http://203.71.253.9/cw/home.htm
38.袁又荂B鄭榮翰、施泰安、黃智敏,2003,自然演替下土地處理系統水質淨化與植物多樣性之研究,雲林科技大學環境與安全工程學系,中華民國環境工程學會之研討會。
39.Watson, J.T., Reed, S.C., Kadlec, R.H., Knight, R.L., Whitehouse, S.E., 1989, “Performance expectations and loading rates for constructed wetlands.” In: Hammer, D.A. (Ed.), Constructed wetlands for wastewater treatment. municipal, industrial and agricultural. Lewis Publishers, Chelsea, pp. 319-358.
40.Tchobanoglous, G.,1993, “Constructed wetlands and aquatic plant system: research, design, operational, and monitoring issues.” In G. A. Moshiri, Ed., Constructed wetlands for water quality improvement. Lewis.
41.Gray, S., Kinross, J., Read P. and Marland, N., 2000, “The nutrient assimilative capacity of mareal as a substrate in constructed wetland systems for waste treatment.” Wat. Res., Vol.34, Iss.8, pp.2183-2190.
42.Persson, J., Somes, N. L. G. and Wong, T. H. G., 1999, “Hydraulics efficiency of constructed wetlands and ponds.” Wat. Sci. Tech., Vol.40, Iss.3, pp.291-300.
43.Robert H. Kadlec, 1999, “Chemical, physical and biological cycles in treatment wetlands.” Wat. Sci. Tech., Vol.40, Iss.3, pp.37-44.
44.Faulkner, S. P. and Richardson, C. J.,1990, “Physical and chemical characteristics of freshwater wetland soils in Constructed wetlands for wastewater treatment.” 2”d printing ed. D A Hammer, Lewis Publishers, Chelsea, Michigan, pp.41-72.
45.Knight R.L., Randall R., Girts M., Tress J.A., Wilhelm M., and Kadlec R.H., 1995, “Arizona guidance manual for constructed watlands for water quality improvement.” Arizona Department of Environmental Quality (ADEQ).
46.van Oostrom A. J.,1995, “Nitrogen removal in constructed wetlands treating nitrified meat processing effluent.” Wat. Sci. Tech.,Vol.32, Iss.3, pp.137- 147.
47.Davies and Cottingham, 1993, “ Phosphorus removel from wastewater in a constructed wetland.” In G. A. Moshiri, Ed., constructed treatment for water quality improvement. Lewis.
48.Richard, K. O.,1993, “Evaluating the role of created and natural wetlands in controlling nonpoint source pollution.” In C. K. Smoley, Ed., Created and natural wetlands for controlling nonpoint source pollution, U. S. EPA.
49.E. Huertas, M. Folch, M. Salgot, I. Gonzalvo, C. Passarell,2006,” Constructed wetlands effluent for streamflow augmentation in the Besòs River (Spain)”,desalination 188,pp.141-147.
50.陳世偉、周志儒、張有義,2005,利用自然疊落過濾法及人工溼地淨化方式-改善武洛溪水質之研究,高雄海洋科技大學,都市河川整治與遠景國際學術研討會。
51.Lee, C. Y.,Lee, C. C.,Lee, F. Y.,Teseng, S. K.,Liao, C. J.,2004,”Performmance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads.”,Bioresource Technology 92,pp.173-179.
52.南台灣天氣個案查詢系統:http://south.cwb.gov.tw/Scase/login.php
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊